					ST DEPARTMENT DIVISION O	OF NA					AME	FC NDED REPC	RM 3 PRT		
		APP	LICATION	FOR P	PERMIT TO DRILL	L				1. WELL NAME and		R 1-32-8-18			
2. TYPE	OF WORK	RILL NEW WELL ((n REENT	ER P&A	WELL DEEPE	N WELL				3. FIELD OR WILDO		IILE FLAT			
4. TYPE						THE WELL				5. UNIT or COMMUNITIZATION AGREEMENT NAME					
6. NAME	OF OPERATOR	₹			Methane Well: NO					GMBU (GRRV) 7. OPERATOR PHONE					
8. ADDR	ESS OF OPERA				TION COMPANY					435 646-4825 9. OPERATOR E-MAIL					
	RAL LEASE N		Rt 3 Box 363		ton, UT, 84052 11. MINERAL OWNE	RSHIP				12. SURFACE OWN		newfield.co	m		
	L, INDIAN, OI	ML-22058			FEDERAL IND	DIAN 🛑) STATE (FEE!	\circ		DIAN 🦲	STATI	~	FEE	
		OWNER (if box :								14. SURFACE OWN					
15. ADDI	RESS OF SURF	ACE OWNER (if b	ox 12 = 'fee							16. SURFACE OWN	ER E-M/	AIL (if box	12 = 'f	ee')	
	AN ALLOTTEE 2 = 'INDIAN')	OR TRIBE NAME			18. INTEND TO COM MULTIPLE FORMATI		E PRODUCT		_	19. SLANT		_		_	
			-		YES (Submit C	Comming	Jling Applicat	ion) NO	<u>(0)</u>	VERTICAL DIF	RECTION	IAL 📵	HORIZON	ITAL 🔵	
20. LOC	ATION OF WE	LL		FOO	TAGES	QT	R-QTR	SECT	ION	TOWNSHIP	R	ANGE	МЕ	RIDIAN	
LOCATI	ON AT SURFA	CE	19	957 FNL	_ 1823 FEL	9	SWNE	32	!	8.0 S	1	.8.0 E		S	
Top of U	Jppermost Pro	24	_ 2265 FEL	5	SWNE	32	2 8.0 S		1	18.0 E		S			
At Total			23		. 2624 FWL		NESW	32		8.0 S		.8.0 E		S	
21. COUI	NTY	UINTAH			22. DISTANCE TO N	24	187			23. NUMBER OF AC		DRILLING 20	UNIT		
					25. DISTANCE TO N (Applied For Drilling	g or Coi		SAME POO	L	26. PROPOSED DEF		TVD: 64	30		
27. ELEV	ATION - GROU	5009			28. BOND NUMBER	B00	1834			29. SOURCE OF DR WATER RIGHTS AP	PROVA		IF APP	LICABLE	
					Hole, Casing,				1						
String	Hole Size	Casing Size 8.625	0 - 300	Weig 24									Weight 15.8		
Prod	7.875	5.5	0 - 6572	15	.5 J-55 LT	&C	8.3	3	Pren	nium Lite High Stre	ngth	316	3.26	11.0	
										50/50 Poz		363	1.24	14.3	
					A ⁻	ТТАСН	IMENTS								
	VERIFY T	HE FOLLOWIN	G ARE ATT	ACHE	D IN ACCORDAN	CE WI	TH THE U	TAH OIL	AND (GAS CONSERVATI	ON GE	NERAL F	RULES		
✓ w	ELL PLAT OR	MAP PREPARED E	Y LICENSED	SURV	EYOR OR ENGINEE	R	№ сом	IPLETE DR	ILLING	G PLAN					
AF	FIDAVIT OF S	TATUS OF SURFA	CE OWNER	AGREE	MENT (IF FEE SURF	ACE)	FOR	M 5. IF OP	ERATO	R IS OTHER THAN T	HE LEAS	SE OWNER	t		
DI DRILLED		URVEY PLAN (IF	DIRECTION	ALLY O	R HORIZONTALLY		№ торо	OGRAPHIC	CAL MA	P					
NAME M	landie Crozier				TITLE Regulatory	Tech			РНО	NE 435 646-4825					
SIGNAT	URE				DATE 08/16/2011				EMA	IL mcrozier@newfield.	.com				
	mber assign 047518810				APPROVAL				B	ermit Manager					
									1						

NEWFIELD PRODUCTION COMPANY GMBU M-32-8-18 AT SURFACE: SW/NE SECTION 32, T8S, R18E UINTAH COUNTY, UTAH

TEN POINT DRILLING PROGRAM

1. **GEOLOGIC SURFACE FORMATION:**

Uinta formation of Upper Eocene Age

2. <u>ESTIMATED TOPS OF IMPORTANT GEOLOGIC MARKERS:</u>

 Uinta
 0' – 1635'

 Green River
 1635'

 Wasatch
 6295'

 Proposed TD
 6572'

3. ESTIMATED DEPTHS OF ANTICIPATED WATER, OIL, GAS OR MINERALS:

Green River Formation (Oil) 1635' – 6295'

Fresh water may be encountered in the Uinta Formation, but would not be expected below about 350'. All water shows and water bearing geologic units shall be reported to the geologic and engineering staff of the Vernal Office prior to running the next string of casing or before plugging orders are requested. All water shows must be reported within one (1) business day after being encountered.

All usable (<10,000 PPM TDS) water and prospectively valuable minerals (as described by BLM at onsite) encountered during drilling will be recorded by depth and adequately protected. This information shall be reported to the Vernal Office.

Detected water flows shall be sampled, analyzed, and reported to the geologic & engineering staff of the Vernal Office. The office may request additional water samples for further analysis. Usage of the State of Utah form *Report of Water Encountered* is acceptable, but not required.

The following information is requested for water shows and samples where applicable:

Location & Sampled Interval Date Sampled Flow Rate Temperature

Hardness pH

Water Classification (State of Utah)

Dissolved Calcium (Ca) (mg/l)

Dissolved Iron (Fe) (ug/l)

Dissolved Sodium (Na) (mg/l)

Dissolved Carbonate (CO₃) (mg/l)

Dissolved Bicarbonate (NaHCO₃) (mg/l)

Dissolved Sulfate (SO₄) (mg/l)

Dissolved Total Solids (TDS) (mg/l)

4. PROPOSED CASING PROGRAM

a. Casing Design: GMBU M-32-8-18

Size	Interval		Maiaht	Grade	Coupling	Design Factors			
Size	Тор	Bottom	Weight	Grade	Couping	Burst	Collapse	Tension	
Surface casing	0'	300'	24.0	J-55	STC	2,950	1,370	244,000	
8-5/8"	U	300		3-33	310	17.53	14.35	33.89	
Prod casing	o.	0.570	45.5	1.55	LTC	4,810	4,040	217,000	
5-1/2"	0'	6,572'	15.5	J-55	LTC	2.30	1.93	2.13	

Assumptions:

- 1) Surface casing max anticipated surface press (MASP) = Frac gradient gas gradient
- 2) Prod casing MASP (production mode) = Pore pressure gas gradient
- 3) All collapse calculations assume fully evacuated casing w/ gas gradient
- 4) All tension calculations assume air weight

Frac gradient at surface casing shoe = 13.0 ppg
Pore pressure at surface casing shoe = 8.33 ppg
Pore pressure at prod casing shoe = 8.33 ppg
Gas gradient = 0.115 psi/ft

All casing shall be new or, if used, inspected and tested. Used casing shall meet or exceed API standards for new casing.

All casing strings shall have a minimum of 1 (one) centralizer on each of the bottom three (3) joints.

b. Cementing Design: GMBU M-32-8-18

Job	Fill	Description	Sacks ft ³	OH Excess*	Weight (ppg)	Yield (ft³/sk)	
Surface casing	300'	Class G w/ 2% CaCl	138	30%	15.8	1.17	
Surface casing	300	Class G W/ 2/0 CaCl	161	30 %	13.0	1.17	
Prod casing	4,572'	Prem Lite II w/ 10% gel + 3%	316	30%	11.0	3.26	
Lead	4,572	KCI	1030	30%	11.0	3.20	
Prod casing	2,000'	50/50 Poz w/ 2% gel + 3%	363	30%	14.3	1.24	
Tail	2,000	KCI	451	30%	14.3	1.24	

^{*}Actual volume pumped will be 15% over the caliper log

- Compressive strength of lead cement: 1800 psi @ 24 hours, 2250 psi @ 72 hours
- Compressive strength of tail cement: 2500 psi @ 24 hours

Hole Sizes: A 12-1/4" hole will be drilled for the 8-5/8" surface casing. A 7-7/8" hole will be drilled for the 5-1/2" production casing.

The 8-5/8" surface casing shall in all cases be cemented back to surface. In the event that during the primary surface cementing operation the cement does not circulate to surface, or if the cement level should fall back more than 8 feet from surface, then a remedial surface cementing operation shall be performed to insure adequate isolation and stabilization of the surface casing.

5. <u>MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL</u>:

The operator's minimum specifications for pressure control equipment are as follows:

An 8" Double Ram Hydraulic unit with a closing unit will be utilized. Function test of BOP's will be check daily.

Refer to Exhibit C for a diagram of BOP equipment that will be used on this well.

6. TYPE AND CHARACTERISTICS OF THE PROPOSED CIRCULATION MUDS:

From surface to ± 300 feet will be drilled with an air/mist system. The air rig is equipped with a 6 ½" blooie line that is straight run and securely anchored. The blooie line is used with a discharge less than 100 ft from the wellbore in order to minimize the well pad size. The blooie line is not equipped with an automatic igniter or continuous pilot light and the compressor is located less than 100 ft from the well bore due to the low possibility of combustion with the air dust mixture. The trailer mounted compressor (capacity of 2000 CFM) has a safety shut-off valve which is located 15 feet from the air rig. A truck with 70 bbls of water is on stand by to be used as kill fluid, if necessary. From about ± 300 feet to TD, a fresh water system will be utilized. Clay inhibition and hole stability will be achieved with a KCl substitute additive. This additive will be identified in the APD and reviewed to determine if the reserve pit shall be lined. This fresh water system will typically contain Total Dissolved Solids (TDS) of less than 3000 PPM. Anticipated mud weight is 8.4 lbs/gal. If necessary to control formation fluids or pressure, the system will be weighted with the addition of bentonite gel, and if pressure conditions warrant, with barite

No chromate additives will be used in the mud system on Federal and/or Indian lands without prior BLM approval to ensure adequate protection of fresh aquifers.

No chemicals subject to reporting under SARA Title III in an amount equal to or greater than 10,000 pounds will be used, produced, stored, transported, or disposed of annually in association with the drilling, testing, or completing of this well. Furthermore, no extremely hazardous substances, as defined in 40 CFR 355, in threshold planning quantities, will be used, produced, stored, transported, or disposed of in association with the drilling, testing, or completing of this well.

Hazardous substances specifically listed by the EPA as a hazardous waste or demonstrating a characteristic of a hazardous waste will not be used in drilling, testing, or completion operations.

Newfield Production will **visually** monitor pit levels and flow from the well during drilling operations.

7. <u>AUXILIARY SAFETY EQUIPMENT TO BE USED</u>:

Auxiliary safety equipment will be a Kelly Cock, bit float, and a TIW valve with drill pipe threads.

8. <u>TESTING, LOGGING AND CORING PROGRAMS</u>:

The logging program will consist of a Dual Induction, Gamma Ray and Caliper log from TD to base of surface casing @ 300' +/-, and a Compensated Neutron-Formation Density Log from TD to 3500' +-. A cement bond log will be run from PBTD to cement top. No drill stem testing or coring is planned for this well.

9. ANTICIPATED ABNORMAL PRESSURE OR TEMPERATURE:

No abnormal temperatures or pressures are anticipated. No hydrogen sulfide has been encountered or is known to exist from previous drilling in the area at this depth. Maximum anticipated bottomhole pressure will approximately equal total depth in feet multiplied by a 0.433 psi/foot gradient.

10. <u>ANTICIPATED STARTING DATE AND DURATION OF THE OPERATIONS:</u>

It is anticipated that the drilling operations will commence the fourth quarter of 2011, and take approximately seven (7) days from spud to rig release.

T8S, R18E, S.L.B.&M. S89°56'W - 79.96 G.L.O. S88°52'44"W - 2633.36' (Meas.) S88'56'13"W - 2658.82' (Meas.) 1910 Brass Cap Spike Brass Cap (Meas.) WELL LOCATION: M-32-8-18ELEV. EXIST. GRADED 15, 2700, GROUND = 5009'2645. Top of NO1.03.16"W Hole 1823' Set Stone (G.L.O.)Pile of 32 1910 Rocks Brass Cap NO.03 W 2487 2800 N0.03, M Center of 2624 Pattern (Meas. Bottom' of Hole 10, 2645. 2595, W., 75,65.00N Proportioned Brass Cap 1910 (Not Set) Brass Cap N89°01'27"E - 2644.19' (Meas.) N89°01'27"E - 2644.19' (Meas.) N89'59'E (G.L.O.) SECTION CORNERS LOCATED M-32-8-18BASIS OF ELEV: Elevations are based on (Surface Location) NAD 83 an N.G.S. OPUS Correction. LOCATION: $LATITUDE = 40^{\circ} 04' 34.78''$ LAT. 40°04'09.56" LONG. 110°00'43.28" LONGITUDE = 109 54 52.00 (Tristate Aluminum Cap) Elev. 5281.57'

NEWFIELD EXPLORATION COMPANY

WELL LOCATION, M-32-8-18, LOCATED AS SHOWN IN THE SW 1/4 NE 1/4 OF SECTION 32, T8S, R18E, S.L.B.&M. UINTAH COUNTY, UTAH.

TARGET BOTTOM HOLE, M-32-8-18, LOCATED AS SHOWN IN THE NE 1/4 SW 1/4 OF SECTION 32, T8S, R18E, S.L.B.&M. UINTAH COUNTY, UTAH.

NOTES:

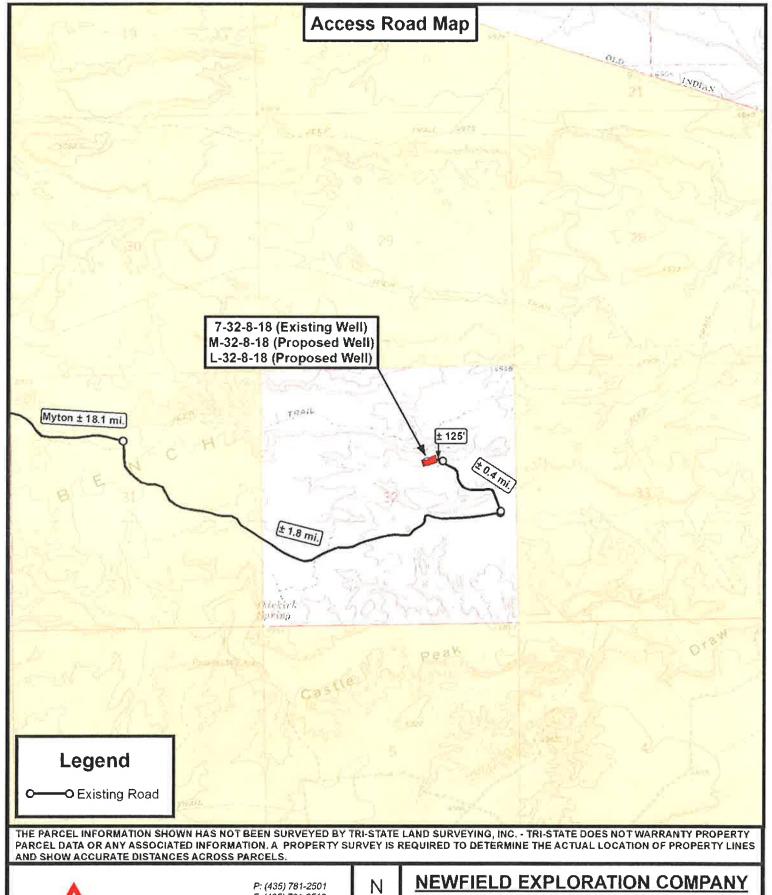
- 1. Well footages are measured at right angles to the Section Lines.
- 2. Bearings are based on Global Positioning Satellite observations.

THIS IS TO CERTIFY THAT THE APANT PER WAS PREPARED FROM FIELD OF ACTUM, SURVEYS MADE BY ME OR UNDER WY SUPPRESSION AND THAT THE SAME ARE TRUE AND SURRECT TO THE BEST OF MY KNOWLEDGE WAS BELLIE 189377

REGISTER OF STATE OF

TRI STATE LAND SURVEYING & CONSULTING

180 NORTH VERNAL AVE. – VERNAL, UTAH 84078 (435) 781–2501

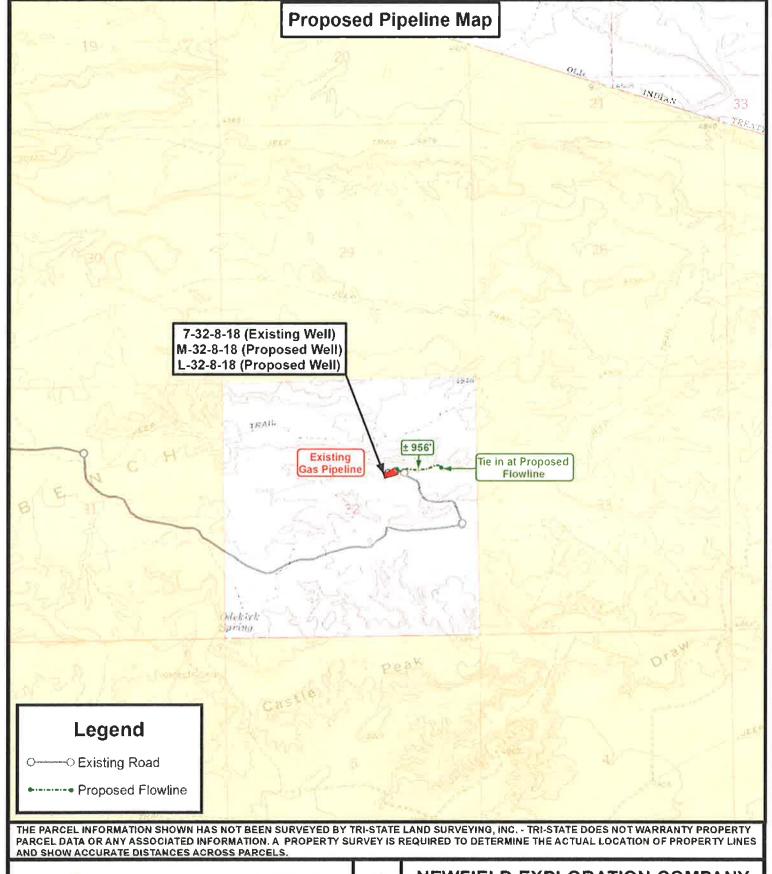

	(100)	
DATE SURVEYED: 06-21-11	SURVEYED BY: K.S.	VERSION:
DATE DRAWN: 08-05-11	DRAWN BY: F.T.M.	\/1
REVISED:	SCALE: 1" = 1000'	V 1

API Well Number: 43047518810000 **Access Road Map** Ring MYTON Benc 8/0 DUCHESNE UNITAH VALLEY Valley hsant 7-32-8-18 (Existing Well) M-32-8-18 (Proposed Well) L-32-8-18 (Proposed Well) See Topo "B" Dr ± 1.8 mi. PARIET Legend EIGH C Existing Road **NEWFIELD EXPLORATION COMPANY** P: (435) 781-2501 F: (435) 781-2518 N 7-32-8-18 (Existing Well) Γri State M-32-8-18 (Proposed Well) Land Surveying, Inc.

180 NORTH VERNAL AVE. VERNAL, UTAH 84078 L-32-8-18 (Proposed Well) SEC. 32, T8S, R18E, S.L.B.&M. Uintah County, UT. DRAWN BY: C.H.M. REVISED: VERSION SHEET 08-03-2011 DATE:

1:100,000

SCALE:


F: (435) 781-2518

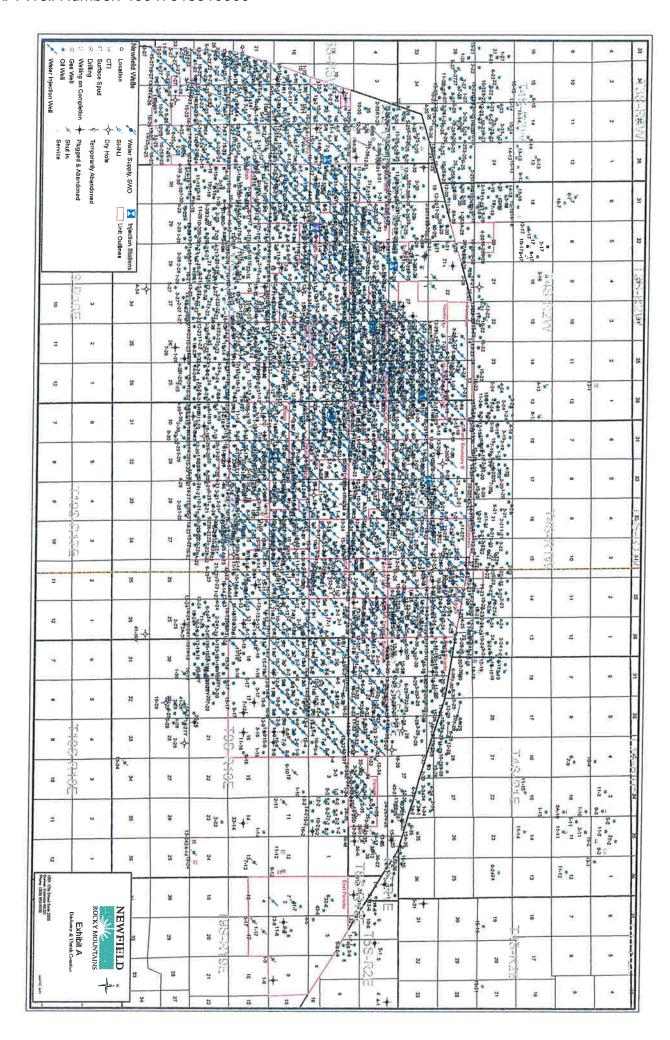
180 NORTH VERNAL AVE. VERNAL, UTAH 84078

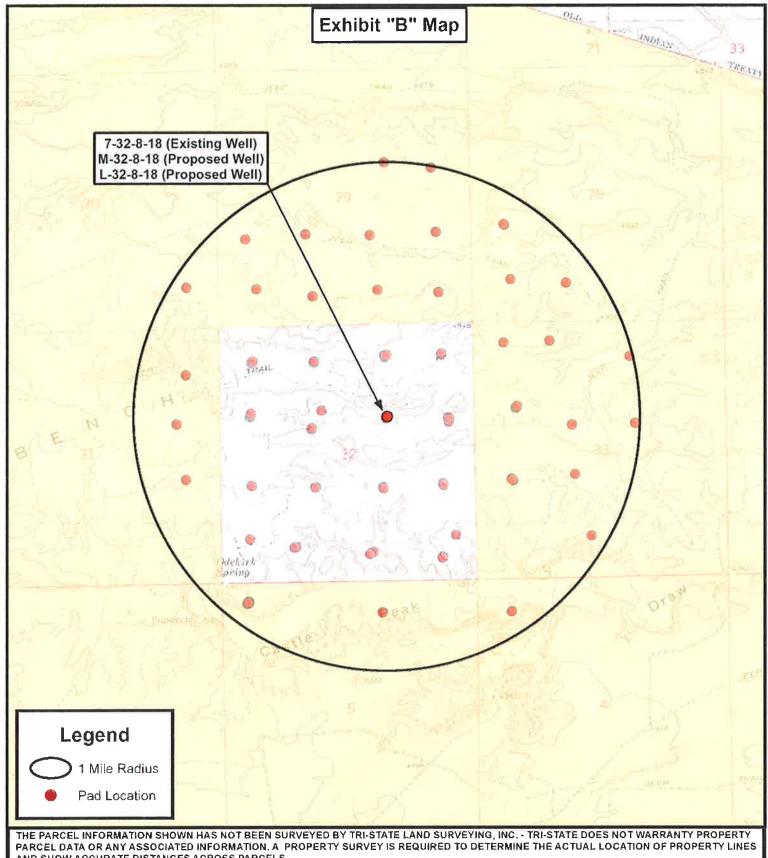
DRAWN BY:	C.H.M.	REVISED:	VERSION
DATE:	08-03-2011		V44
SCALE:	1"= 2,000"		V1

7-32-8-18 (Existing Well) M-32-8-18 (Proposed Well) L-32-8-18 (Proposed Well) SEC. 32, T8S, R18E, S.L.B.&M. Uintah County, UT.

P: (435) 781-2501 F: (435) 781-2518

180 NORTH VERNAL AVE. VERNAL, UTAH 84078


27			
DRAWN BY:	C.H.M.	REVISED:	VERSION:
DATE:	08-03-2011		V/4
SCALE:	1 " = 2,000 '		VI



NEWFIELD EXPLORATION COMPANY

7-32-8-18 (Existing Well) M-32-8-18 (Proposed Well) L-32-8-18 (Proposed Well) SEC. 32, T8S, R18E, S.L.B.&M. Uintah County, UT.

AND SHOW ACCURATE DISTANCES ACROSS PARCELS.

P: (435) 781-2501 F: (435) 781-2518

180 NORTH VERNAL AVE. VERNAL, UTAH 84078

DRAWN BY:	C.H.M.	REVISED:	VERSION:
DATE:	08-03-2011		1/4
SCALE:	1"= 2.000 '		VI

NEWFIELD EXPLORATION COMPANY

7-32-8-18 (Existing Well) M-32-8-18 (Proposed Well) L-32-8-18 (Proposed Well) SEC. 32, T8S, R18E, S.L.B.&M. Uintah County, UT.

NEWFIELD EXPLORATION

USGS Myton SW (UT) SECTION 32 T8, R18 M-32-8-18

Wellbore #1

Plan: Design #1

Standard Survey Report

21 July, 2011

PayZone Directional Services, LLC.

Survey Report

MD Reference:

NEWFIELD EXPLORATION Company:

Project: USGS Myton SW (UT) SECTION 32 T8. R18 Site:

Well: M-32-8-18 Wellbore #1 Wellbore: Design: Design #1

Local Co-ordinate Reference:

Well M-32-8-18 M-32-8-18 @ 5021.0ft (Newfield Rig) **TVD Reference:**

M-32-8-18 @ 5021.0ft (Newfield Rig)

North Reference:

Minimum Curvature **Survey Calculation Method:**

Database: EDM 2003.21 Single User Db

USGS Myton SW (UT), DUCHESNE COUNTY, UT, USA **Project**

US State Plane 1983 Map System:

North American Datum 1983 Geo Datum:

Map Zone: Utah Central Zone

Mean Sea Level System Datum:

Site **SECTION 32 T8, R18**

Northing: 7,200,263.45 ft Site Position: 40° 4' 35.740 N Latitude: From: Lat/Long Easting: 2,067,256.45 ft Longitude: 109° 58' 28.340 W 0.98 **Position Uncertainty:** 0.0 ft Slot Radius: **Grid Convergence:**

Well M-32-8-18, SHL LAT: 40 04 34.78 LONG: -109 54 52.00 **Well Position** +N/-S 0.0 ft Northing: 7,200,458.75 ft Latitude: 40° 4' 34.780 N +E/-W 0.0 ft Easting: 2,084,071.49 ft Longitude: 109° 54' 52.000 W 0.0 ft 5,021.0 ft Ground Level: **Position Uncertainty** Wellhead Elevation: 5,009.0 ft

Wellbore	Wellbore #1				
Magnetics	Model Name	Sample Date	Declination (°)	Dip Angle (°)	Field Strength (nT)
	IGRF2010	2011/07/21	11.25	65.85	52,303

Design #1 Design **Audit Notes:** Tie On Depth: 0.0 Version: Phase: **PROTOTYPE** Direction **Vertical Section:** Depth From (TVD) +N/-S +E/-W (ft) (ft) (ft) (°) 5,300.0 0.0 0.0 220.77

Date 2011/07/21 **Survey Tool Program** From То (ft) (ft) Survey (Wellbore) **Tool Name** Description MWD MWD - Standard 0.0 6,572.2 Design #1 (Wellbore #1)

Planned Survey									
Measured Depth (ft)	Inclination Azimuth		Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)			Build Rate (°/100ft)	Turn Rate (°/100ft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
Start Build 1	.50								
700.0	1.50	220.77	700.0	-1.0	-0.9	1.3	1.50	1.50	0.00
800.0	3.00	220.77	799.9	-4.0	-3.4	5.2	1.50	1.50	0.00
900.0	4.50	220.77	899.7	-8.9	-7.7	11.8	1.50	1.50	0.00
1,000.0	6.00	220.77	999.3	-15.8	-13.7	20.9	1.50	1.50	0.00
1,100.0	7.50	220.77	1,098.6	-24.7	-21.3	32.7	1.50	1.50	0.00

PayZone Directional Services, LLC.

Survey Report

MD Reference:

NEWFIELD EXPLORATION Company:

Project: USGS Myton SW (UT) Site: **SECTION 32 T8, R18**

Well: M-32-8-18 Wellbore #1 Wellbore: Design: Design #1

Local Co-ordinate Reference:

Well M-32-8-18 M-32-8-18 @ 5021.0ft (Newfield Rig) TVD Reference:

North Reference:

Minimum Curvature **Survey Calculation Method:**

EDM 2003.21 Single User Db Database:

M-32-8-18 @ 5021.0ft (Newfield Rig)

g	DCC				Database.		EDIN 2000.21 Onigio Osci Db				
ned S	Survey										
N	fleasured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	
	1,200.0	9.00	220.77	1,197.5	-35.6	-30.7	47.0	1.50	1.50	0.00	
	1,300.0	10.50	220.77	1,296.1	-48.4	-41.8	64.0	1.50	1.50	0.00	
	1,400.0	12.00	220.77	1,394.2	-63.2	-54.5	83.5	1.50	1.50	0.00	
	1,479.6	13.19	220.77	1,471.8	-76.4	-65.8	100.8	1.50	1.50	0.00	
		hold at 1479.6 M		1,47 1.0	-10.4	-03.0	100.0	1.50	1.50	0.00	
	1,500.0	13.19	220.77	1,491.7	-79.9	-68.9	105.5	0.00	0.00	0.00	
	1,600.0	13.19	220.77	1,589.1	-73.3 -97.2	-83.8	128.3	0.00	0.00	0.00	
	1,700.0	13.19	220.77	1,686.4	-114.5	-98.7	151.1	0.00	0.00	0.00	
	1,800.0	13.19	220.77	1,783.8	-131.7	-113.6	174.0	0.00	0.00	0.00	
	1,900.0	13.19	220.77	1,881.2	-149.0	-128.5	196.8	0.00	0.00	0.00	
	2,000.0	13.19	220.77	1,001.2	-149.0 -166.3	-120.5 -143.4	219.6	0.00	0.00	0.00	
	2,100.0	13.19	220.77	2,075.9	-183.6	-143.4	242.4	0.00	0.00	0.00	
	2,200.0	13.19	220.77	2,173.2	-200.9	-173.2	265.3	0.00	0.00	0.00	
	2,300.0	13.19	220.77	2,270.6	-218.2	-188.1	288.1	0.00	0.00	0.00	
	2,400.0 2,500.0	13.19 13.19	220.77 220.77	2,368.0 2,465.3	-235.5 -252.7	-203.0 -217.9	310.9 333.7	0.00 0.00	0.00 0.00	0.00 0.00	
	2,500.0	13.19	220.77	2,465.3 2,562.7	-252.7 -270.0	-217.9 -232.8	356.5	0.00	0.00	0.00	
	2,700.0	13.19	220.77	2,660.0	-287.3	-232.0	379.4	0.00	0.00	0.00	
	2,800.0	13.19	220.77	2,757.4	-304.6	-262.6	402.2	0.00	0.00	0.00	
	2,900.0 3,000.0	13.19 13.19	220.77 220.77	2,854.8 2,952.1	-321.9 -339.2	-277.5 -292.5	425.0 447.8	0.00 0.00	0.00 0.00	0.00 0.00	
	3,100.0	13.19	220.77	3,049.5	-359.2 -356.5	-292.5 -307.4	447.6 470.7	0.00	0.00	0.00	
	3,200.0	13.19	220.77	3,146.8	-373.7	-322.3	493.5	0.00	0.00	0.00	
	3,300.0	13.19	220.77	3,244.2	-391.0	-337.2	516.3	0.00	0.00	0.00	
	3,400.0		220.77	3,341.6	-408.3	-352.1		0.00	0.00	0.00	
	3,500.0	13.19 13.19	220.77	3,438.9	-406.3 -425.6	-352.1 -367.0	539.1 562.0	0.00	0.00	0.00	
	3,600.0	13.19	220.77	3,536.3	-423.0 -442.9	-381.9	584.8	0.00	0.00	0.00	
	3,700.0	13.19	220.77	3,633.6	-460.2	-396.8	607.6	0.00	0.00	0.00	
	3,800.0	13.19	220.77	3,731.0	-477.4	-411.7	630.4	0.00	0.00	0.00	
	3,900.0	13.19	220.77			-426.6		0.00	0.00	0.00	
	4,000.0	13.19	220.77	3,828.4 3,925.7	-494.7 -512.0	-420.0 -441.5	653.3 676.1	0.00	0.00	0.00	
	4,100.0	13.19	220.77	4,023.1	-529.3	-456.4	698.9	0.00	0.00	0.00	
	4,200.0	13.19	220.77	4,120.4	-546.6	-471.3	721.7	0.00	0.00	0.00	
	4,300.0	13.19	220.77	4,217.8	-563.9	-486.2	744.5	0.00	0.00	0.00	
		13.19	220.77	4 245 2	-581.2	-501.1	767.4	0.00	0.00	0.00	
	4,400.0 4,500.0	13.19	220.77	4,315.2 4,412.5	-561.2 -598.4	-501.1 -516.0	767. 4 790.2	0.00	0.00	0.00	
	4,600.0	13.19	220.77	4,509.9	-615.7	-530.9	813.0	0.00	0.00	0.00	
	4,700.0	13.19	220.77	4,607.2	-633.0	-545.8	835.8	0.00	0.00	0.00	
	4,800.0	13.19	220.77	4,704.6	-650.3	-560.7	858.7	0.00	0.00	0.00	
	4,900.0	13.19	220.77	4,802.0	-667.6	-575.6	881.5	0.00	0.00	0.00	
	5,000.0	13.19	220.77	4,899.3	-684.9	-575.6 -590.5	904.3	0.00	0.00	0.00	
	5,100.0	13.19	220.77	4,996.7	-702.2	-605.4	927.1	0.00	0.00	0.00	
	5,200.0	13.19	220.77	5,094.0	-719.4	-620.3	950.0	0.00	0.00	0.00	
	5,300.0	13.19	220.77	5,191.4	-736.7	-635.3	972.8	0.00	0.00	0.00	
	5,400.0 5,411.5	13.19 13.19	220.77 220.77	5,288.8 5,300.0	-754.0 -756.0	-650.2 -651.9	995.6 998.2	0.00 0.00	0.00 0.00	0.00 0.00	
		hold at 5411.5 N		5,500.0	750.0	551.9	330.2	0.00	0.00	0.00	
	5,500.0	13.19	220.77	5,386.1	-771.3	-665.1	1,018.4	0.00	0.00	0.00	
	5,600.0	13.19	220.77	5,483.5	-771.3 -788.6	-680.0	1,016.4	0.00	0.00	0.00	
	5,700.0	13.19	220.77	5,580.9	-805.9	-694.9	1,064.1	0.00	0.00	0.00	
				,							
	5,800.0	13.19	220.77	5,678.2	-823.2	-709.8	1,086.9	0.00	0.00	0.00	
	5,900.0 6,000.0	13.19 13.19	220.77 220.77	5,775.6 5,872.9	-840.4 -857.7	-724.7 -739.6	1,109.7 1 132 5	0.00 0.00	0.00 0.00	0.00 0.00	
	6,000.0	13.19	220.77	5,970.3	-875.0	-739.6 -754.5	1,132.5 1,155.4	0.00	0.00	0.00	

PayZone Directional Services, LLC.

Survey Report

Company: NEWFIELD EXPLORATION

Project: USGS Myton SW (UT)
Site: SECTION 32 T8, R18

Well: M-32-8-18
Wellbore: Wellbore #1
Design: Design #1

Local Co-ordinate Reference:

Survey Calculation Method:

TVD Reference:
MD Reference:
North Reference:

Database:

Well M-32-8-18

M-32-8-18 @ 5021.0ft (Newfield Rig) M-32-8-18 @ 5021.0ft (Newfield Rig)

True

Minimum Curvature

EDM 2003.21 Single User Db

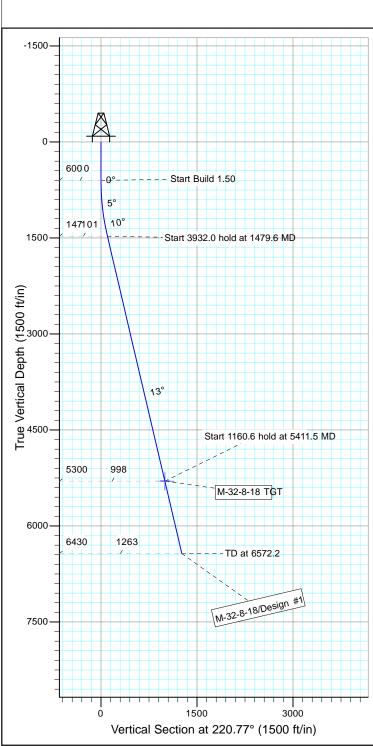
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
6,200.0	13.19	220.77	6,067.7	-892.3	-769.4	1,178.2	0.00	0.00	0.00
6,300.0 6,400.0 6,500.0 6,572.2	13.19 13.19 13.19 13.19	220.77 220.77 220.77 220.77	6,165.0 6,262.4 6,359.7 6,430.0	-909.6 -926.9 -944.1 -956.6	-784.3 -799.2 -814.1 -824.9	1,201.0 1,223.8 1,246.7 1,263.1	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00

Wellbore Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (ft)	Easting (ft)	Latitude	Longitude
M-32-8-18 TGT - plan hits target cent - Circle (radius 75.0)	0.00 er	0.00	5,300.0	-756.0	-651.9	7,199,691.31	2,083,433.12	40° 4' 27.308 N	109° 55' 0.386 W

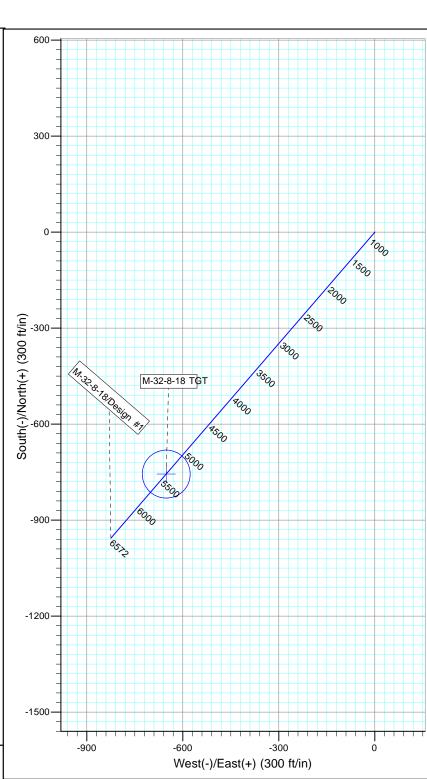
Plan Annotations				
Measured	Vertical	Local Coor	dinates	
Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment
600.0		0.0	0.0	Start Build 1.50
1,479.6	1,471.8	-76.4	-65.8	Start 3932.0 hold at 1479.6 MD
5,411.5	5,300.0	-756.0	-651.9	Start 1160.6 hold at 5411.5 MD
6,572.2	6,430.0	-956.6	-824.9	TD at 6572.2

Checked By:	Approved By:	Date:	

Project: USGS Myton SW (UT) Site: SECTION 32 T8, R18


Well: M-32-8-18 Wellbore: Wellbore #1 Design: Design #1

KOP @ 600' DOGLEG RATE 1.5 DEG/100 TARGET RADIUS IS 75'


Azimuths to True North Magnetic North: 11.24°

Magnetic Field Strength: 52302.6snT Dip Angle: 65.85° Date: 2011/07/21 Model: IGRF2010

+N/-S +E/-W DLeg TFace Target 0.0 600.0 1471.8 0.0 0.0 -76.4 0.0 0.00 0.00 0.0 0.0 -65.8 0.00 0.00 1.50 220.77 0.0 100.8 5300.0 -756.0 -651.9 0.00 0.00 998.2 M-32-8-18 TGT

SECTION DETAILS

-824.9

-956.6

1 2 3

0.0 0.00 0.00 600.0 0.00 0.00 1479.6 13.19 220.77

5411.5 13.19 220.77

6572.2 13.19 220.77 6430.0

NEWFIELD PRODUCTION COMPANY GMBU M-32-8-18 AT SURFACE: SW/NE SECTION 32, T8S, R18E UINTAH COUNTY, UTAH

ONSHORE ORDER NO. 1

MULTI-POINT SURFACE USE & OPERATIONS PLAN

1. EXISTING ROADS

See attached Topographic Map "A"

To reach Newfield Production Company well location site GMBU M-32-8-18 located in the SW 1/4 NE 1/4 Section 32, T8S, R18E, Uintah County, Utah:

Proceed southwesterly out of Myton, Utah along Highway 40 - 1.4 miles \pm to the junction of this highway and UT State Hwy 53; proceed southeasterly – 11.7 miles \pm to it's junction with an existing road to the northeast; proceed northeasterly – 6.8 miles \pm to it's junction with an existing road to the northwest; proceed in a northwesterly direction – 0.4 miles \pm to the existing 7-32-8-18 well pad.

The aforementioned dirt oil field service roads and other roads in the vicinity are constructed out of existing native materials that are prevalent to the existing area they are located in and range from clays to a sandy-clay shale material.

The roads for access during the drilling, completion and production phase will be maintained at the standards required by the State of Utah, or other controlling agencies. This maintenance will consist of some minor grader work for smoothing road surfaces and for snow removal. Any necessary fill material for repair will be purchase and hauled from private sources.

2. PLANNED ACCESS ROAD

There is no proposed access road for this location. The proposed well will be drilled directionaly off of the existing 7-32-8-18 well pad. See attached **Topographic Map "B"**.

There will be **no** culverts required along this access road. There will be barrow ditches and turnouts as needed along this road.

There are no fences encountered along this proposed road. There will be no new gates or cattle guards required.

All construction material for this access road will be borrowed material accumulated during construction of the access road.

3. <u>LOCATION OF EXISTING WELLS</u>

Refer to Exhibit "B".

4. LOCATION OF EXISTING AND/OR PROPOSED FACILITIES

There are no existing facilities that will be used by this well.

It is anticipated that this well will be a producing oil well.

Upon construction of a tank battery, the well pad will be surrounded by a dike of sufficient capacity to contain at minimum 110% of the largest tank volume within the facility battery.

Tank batteries will be built to State specifications.

All permanent (on site for six (6) months or longer) structures, constructed or installed (including pumping units), will be painted a flat, non-reflective, earth tone color to match one of the standard environmental colors, as determined by the Rocky Mountain Five State Interagency Committee. All facilities will be painted within six months of installation.

5. LOCATION AND TYPE OF WATER SUPPLY

Newfield Production will transport water by truck from nearest water source as determined by a Newfield representative for the purpose of drilling the above mentioned well. The available water sources are as follows:

Johnson Water District Water Right: 43-10136

Maurice Harvey Pond Water Right: 47-1358

Neil Moon Pond Water Right: 43-11787

Newfield Collector Well

Water Right: 47-1817 (A30414DVA, contracted with the Duchesne County Conservancy

District).

There will be no water well drilled at this site.

6. SOURCE OF CONSTRUCTION MATERIALS

All construction material for this location shall be borrowed material accumulated during construction of the location site and access road.

A mineral material application is not required for this location.

7. METHODS FOR HANDLING WASTE DISPOSAL

A small reserve pit (90' x 40' x 8' deep, or less) will be constructed from native soil and clay materials. The reserve pit will receive the processed drill cutting (wet sand, shale & rock) removed from the wellbore. Any drilling fluids, which do accumulate in the pit as a result of shale-shaker carryover, cleaning of the sand trap, etc., will be promptly reclaimed. All drilling fluids will be fresh water based, typically containing Total Dissolved Solids of less than 3000 PPM. No potassium chloride, chromates, trash, debris, nor any other substance deemed hazardous will be placed in this pit. Therefore, it is proposed that no synthetic liner be required in the reserve pit. However, if upon constructing the pit there is insufficient fine clay and silt present, a liner will be used for the purpose of reducing water loss through percolation.

Newfield requests approval that a flare pit not be constructed or utilized on this location.

A portable toilet will be provided for human waste.

A trash basket will be provided for garbage (trash) and hauled away to an approved disposal site at the completion of the drilling activities.

8. <u>ANCILLARY FACILITIES</u>

There are no ancillary facilities planned for at the present time and none foreseen in the near future.

9. <u>WELL SITE LAYOUT</u>

See attached Location Layout Sheet.

Fencing Requirements

All pits will be fenced according to the following minimum standards:

- a) A 39-inch net wire shall be used with at least one strand of barbed wire on top of the net.
- b) The net wire shall be no more than two (2) inches above the ground. The barbed wire shall be three (3) inches above the net wire. Total height of the fence shall be at least forty-two (42) inches.
- c) Corner posts shall be centered and/or braced in such a manner to keep tight at all times
- d) Standard steel, wood or pipe posts shall be used between the corner braces. Maximum distance between any two posts shall be no greater than sixteen (16) feet.
- e) All wire shall be stretched, by using a stretching device, before it is attached to the corner posts.

The reserve pit fencing will be on three (3) sides during drilling operations and on the fourth side when the rig moves off location. Pits will be fenced and maintained until cleanup.

Existing fences to be crossed by the access road will be braced and tied off before cutting so as to prevent slacking in the wire. The opening shall be closed temporarily as necessary during construction to prevent the escape of livestock, and upon completion of construction the fence shall be repaired to BLM specifications.

10. PLANS FOR RESTORATION OF SURFACE:

a) Producing Location

Immediately upon well completion, the location and surrounding area will be cleared of all unused tubing, equipment, debris, material, trash and junk not required for production.

The reserve pit and that portion of the location not needed for production facilities/operations will be recontoured to the approximated natural contours. Weather permitting, the reserve pit will be reclaimed within one hundred twenty (120) days from the date of well completion. Before any dirt work takes place, the reserve pit must have all fluids and hydrocarbons removed.

b) Dry Hole Abandoned Location

At such time as the well is plugged and abandoned, the operator shall submit a subsequent report of abandonment and the State of Utah will attach the appropriate surface rehabilitation conditions of approval.

11. <u>SURFACE OWNERSHIP</u> – State of Utah.

11. OTHER ADDITIONAL INFORMATION:

The Archaeological Resource Survey and Paleontological Resource Survey for this area are attached. MOAC Report #01-177, 11/14/01. Paleontological Resource Survey prepared by, Wade Miller, 8/11/11. See attached report cover pages, Exhibit "D".

Surface Flow Line

Newfield requests 956' of surface flow line be granted. The Surface Flow Line will consist of up to a 14" bundled pipe consisting of 2-2" poly glycol lines and 1-3" production line. For all new wells, Newfield. **Refer to Topographic Map "C"** for the proposed location of the proposed flow line. Flow lines will be tan and will be constructed using the following procedures:

<u>Clearing and Grading</u>: No clearing or grading of the ROW will be required. The centerline of the proposed route will be staked prior to installation. Flow lines shall be placed as close to existing roads as possible without interfering with normal road travel or road maintenance activities. Due to the proximity of existing facilities, no temporary use or construction/storage areas are anticipated. If necessary, temporary use or construction/storage areas will be identified on a topographic map included in the approved permit.

<u>Installation</u>: The proposed flow lines will be installed 4-6" above the ground. For portions along existing two-track and primary access roads, lengths of pipe will be strung out in the borrow ditch, welded together, and rolled or dragged into place with heavy equipment. For pipelines that are installed cross-country (not along existing or proposed roads), travel along the lines will be infrequent and for maintenance needs only. No installation activities will be performed during periods when the soil is too wet to adequately support installation equipment. If such equipment creates ruts in excess of three (3) inches deep, the soil will be deemed too wet to adequately support the equipment.

<u>Termination and Final Reclamation:</u> After abandonment of the associated production facilities, the flow lines will be cut and removed, and any incidental surface disturbance reclaimed. Reclamation procedures will follow those outlined in the Castle Peak and Eight Mile Flat Reclamation and Weed Management Plan.

- a) Newfield Production Company is responsible for informing all persons in the area who are associated with this project that they will be subject to prosecution for knowingly disturbing historic or archaeological sites, or for collecting artifacts. If historic or archaeological materials are uncovered during construction, Newfield is to immediately stop work that might further disturb such materials and contact the Authorized Officer.
- b) Newfield Production will control noxious weeds along rights-of-way for roads, pipelines, well sites or other applicable facilities. On State administered land it is required that a Pesticide Use Proposal shall be submitted and given approval prior to the application of herbicides or other possible hazardous chemicals.
- c) Drilling rigs and/or equipment used during drilling operations on this well site will not be stacked or stored on State Lands after the conclusion of drilling operations or at any other time without State authorization. However, if State authorization is obtained, it is only a temporary measure to allow time to make arrangements for permanent storage on commercial facilities

Water Disposal

After first production, if the production water meets quality guidelines, it will be transported to the Ashley, Monument Butte, Jonah, South Wells Draw and Beluga water injection facilities by company or contract trucks. Subsequently, the produced water is injected into approved Class II wells to enhance Newfield's secondary recovery project. Water not meeting quality criteria, will be disposed at Newfield's Pariette #4 disposal well (Sec. 7, T9S R19E), Federally approved surface disposal facilities or at a State of Utah approved surface disposal facilities.

Additional Surface Stipulations

All lease and/or unit operations will be conducted in such a manner that full compliance is made with all applicable laws and regulations, Onshore Oil and Gas Orders, the approved plan of operations and any applicable Notice to Lessees. A copy of these conditions will be furnished to the field representative to ensure compliance.

Hazardous Material Declaration

Newfield Production Company guarantees that during the drilling and completion of the GMBU M-32-8-18, Newfield will not use, produce, store, transport or dispose 10,000# annually of any of the hazardous chemicals contained in the Environmental Protection Agency's consolidated list of chemicals subject to reporting under Title III Superfund Amendments and Reauthorization Act (SARA) of 1986. Newfield also guarantees that during the drilling and completion of the GMBU M-32-8-18, Newfield will use, produce, store, transport or dispose less than the threshold planning quantity (T.P.Q.) of any extremely hazardous substances as defined in 40 CFR 355.

A complete copy of the approved APD, if applicable, shall be on location during the construction of the location and drilling activities.

Newfield Production Company or a contractor employed by Newfield Production shall contact the State office at (801) 722-3417, 48 hours prior to construction activities.

13. **LESSEE'S OR OPERATOR'S REPRENSENTATIVE AND CERTIFICATION:**

Representative

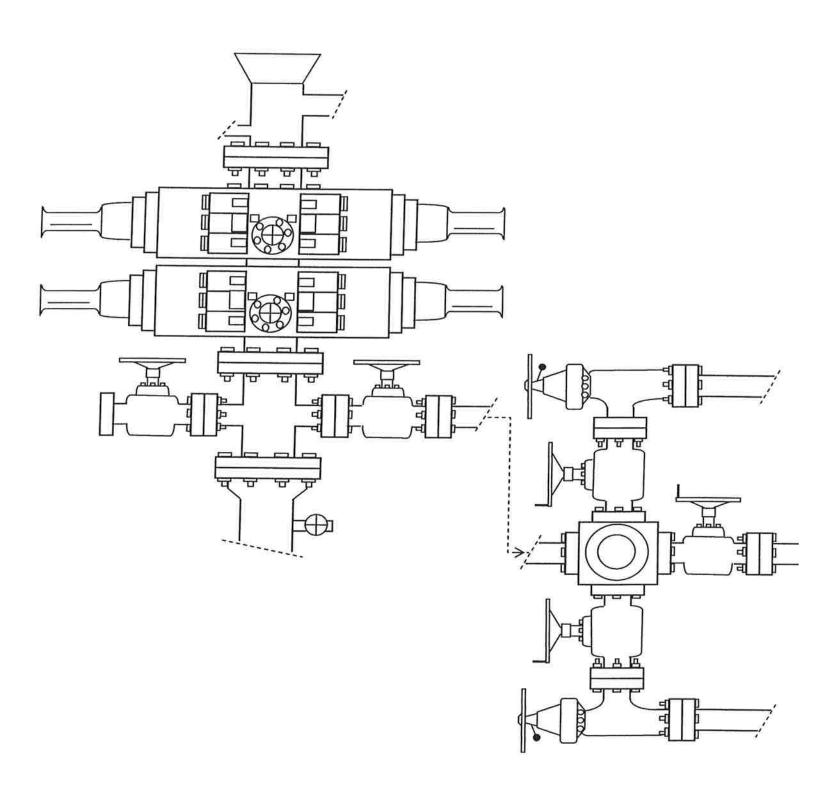
Name: Tim Eaton

Address: Newfield Production Company

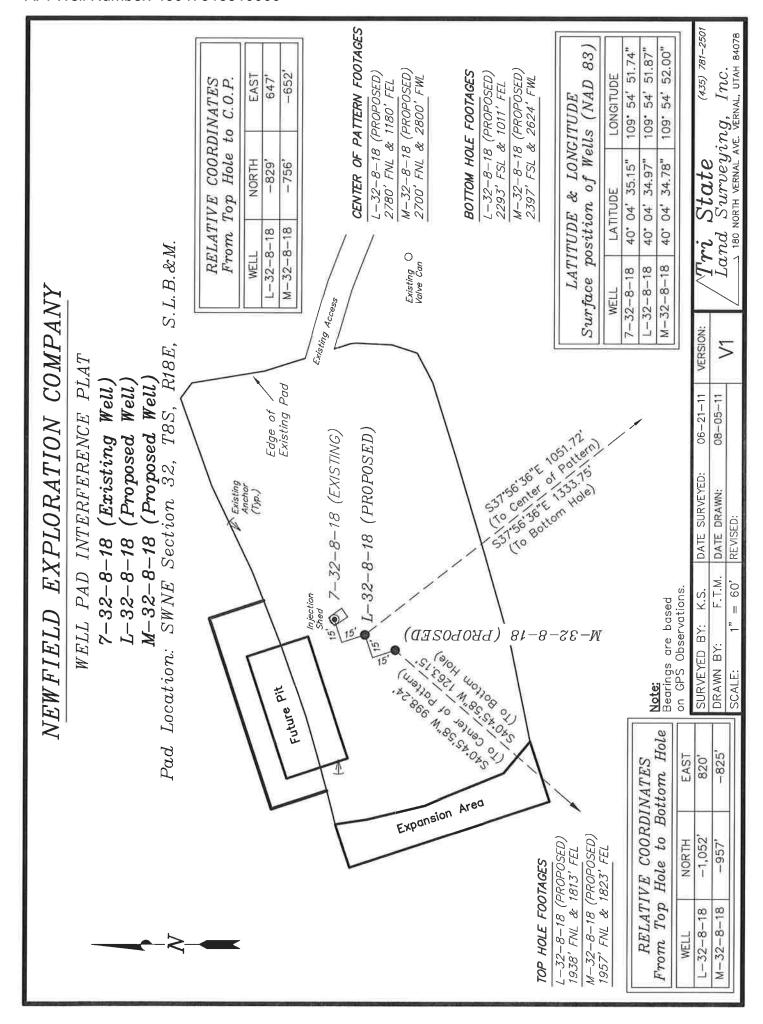
Route 3, Box 3630 Myton, UT 84052

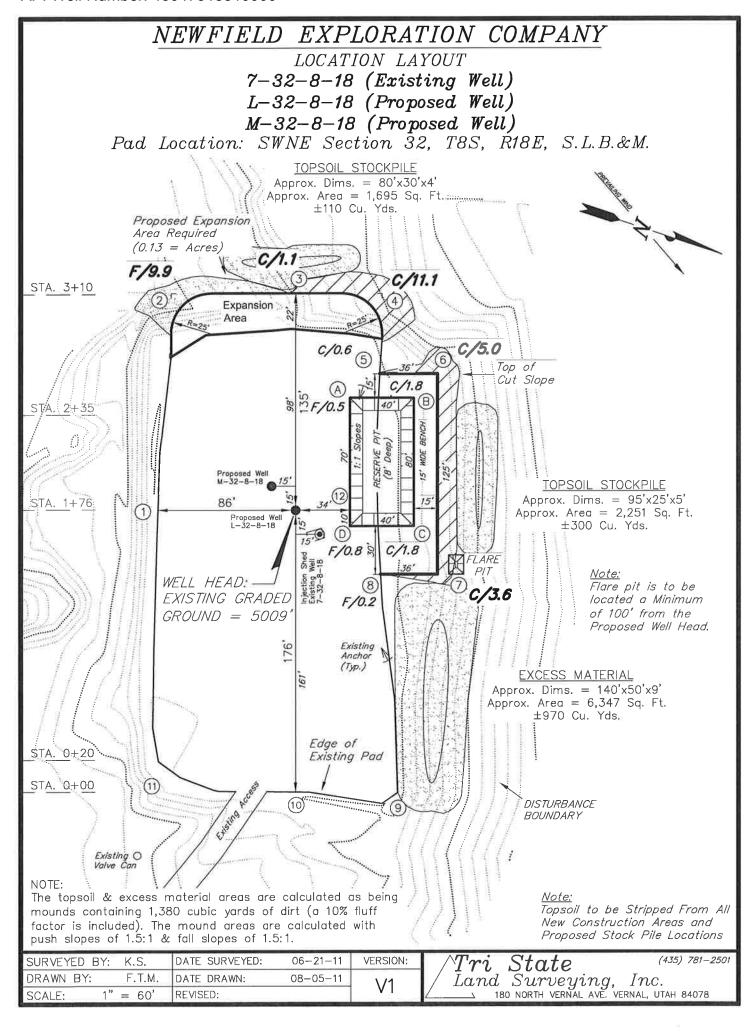
Telephone: (435) 646-3721

Certification


Please be advised that NEWFIELD PRODUCTION COMPANY is considered to be the operator of well #M-32-8-18, Section 32, Township 8S, Range 18E: Lease ML-22058 Uintah County, Utah: and is responsible under the terms and conditions of the lease for the operations conducted upon the leased lands. Bond coverage is provided by, Federal Bond #B001834.

I hereby certify that the proposed drill site and access route have been inspected, and I am familiar with the conditions which currently exist; that the statements made in this plan are true and correct to the best of my knowledge; and that the work associated with the operations proposed here will be performed by Newfield Production Company and its contractors and subcontractors in conformity with this plan and the terms and conditions under which it is approved. This statement is subject to the provisions of the 18 U.S.C. 1001 for the filing of a false statement.


8/16/11	
Date	Mandie Crozier
	Regulatory Specialist
	Newfield Production Company


2-M SYSTEM

Blowout Prevention Equipment Systems

EXHIBIT C

API Well Number: 43047518810000 NEWFIELD EXPLORATION COMPANY CROSS SECTIONS 7-32-8-18 (Existing Well) L-32-8-18 (Proposed Well) M-32-8-18 (Proposed Well) Pad Location: SWNE Section 32, T8S, R18E, S.L.B.&M. PROPOSED **EXPANSION** AREA 30 11 STA. 3+10 1" = 60'30 11 1'' = 60'STA. 2+35 EXISTING FINISHED GRADE GRADE 30, II PROPOSED WELL HEAD 1'' = 60'STA. 1+76 30, 11 1" = 60'STA. 0+20 ESTIMATED EARTHWORK QUANTITIES (No Shrink or swell adjustments have been used) (Expressed in Cubic Yards) 6" TOPSOIL ITEM CUT FILL **EXCESS**

SLOPES ARE A					
SURVEYED BY:	K.S.	DATE	SURVEYED:	06-21-11	VERSION:
DRAWN BY:	F.T.M.	DATE	DRAWN:	08-05-11	\ /1

REVISED:

NOTE:

SCALE:

UNLESS OTHERWISE

1" = 60'

f, State (435) 781-. d Surveying, Inc. 180 north vernal ave. Vernal, utah 84078(435) 781-2501 Land

430

430

0

Topsoil is

not included in Pad Cut

370

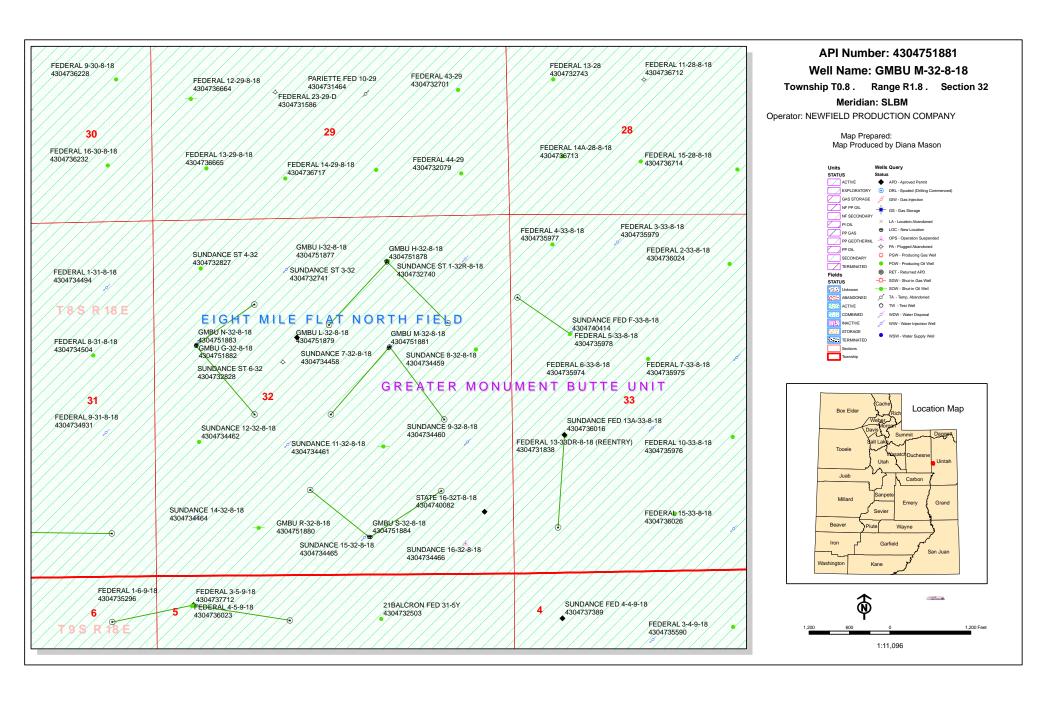
190

690

880

PAD

PIT


TOTALS

620

690

1,310

NEWFIELD EXPLORATION COMPANY TYPICAL RIG LAYOUT 7-32-8-18 (Existing Well) L-32-8-18 (Proposed Well) M-32-8-18 (Proposed Well) Pad Location: SWNE Section 32, T8S, R18E, S.L.B.&M. Proposed Expansion Area Required (0.13 = Acres)22 YELLOW DOG STORAGE 36' BOILER PUMP PUMP 3011 99. PARTS HOUSE 15 FLARE PIT PIPE RACKS ☐ TOILET Flare pit is to be TRAILERS PIPE RACKS located a Minimum of 100' from the Proposed Well Head. Existing Anchor (Typ.) 191 Edge of Existing Pad DATA Existing () Valve Can (435) 781-2501 StateDATE SURVEYED: VERSION: SURVEYED BY: K.S. 06-21-11 Land Surveying, Inc. 180 NORTH VERNAL AVE. VERNAL, UTAH 84078 DRAWN BY: F.T.M. DATE DRAWN: 08-05-11 REVISED: 1" = 60'SCALE:

United States Department of the Interior

BUREAU OF LAND MANAGEMENT

Utah State Office
P.O. Box 45155
Salt Lake City, Utah 84145-0155

IN REPLY REFER TO: 3160 (UT-922)

August 19, 2011

Memorandum

To: Assistant District Manager Minerals, Vernal District

From: Michael Coulthard, Petroleum Engineer

Subject: 2011 Plan of Development Greater Monument

Butte Unit, Duchesne and Uintah Counties,

Utah.

Pursuant to email between Diana Whitney, Division of Oil, Gas and Mining, and Mickey Coulthard, Utah State Office, Bureau of Land Management, the following wells are planned for calendar year 2011 within the Greater Monument Butte Unit, Duchesne and Uintah Counties, Utah.

API# WELL NAME LOCATION

(Proposed PZ GREEN RIVER)

43-047-51877 GMBU I-32-8-18 Sec 32 T08S R18E 0664 FNL 1838 FEL BHL Sec 32 T08S R18E 1606 FNL 0944 FEL 43-047-51878 GMBU H-32-8-18 Sec 32 T08S R18E 1606 FNL 0944 FEL BHL Sec 32 T08S R18E 1598 FNL 2618 FWL 43-047-51879 GMBU L-32-8-18 Sec 32 T08S R18E 1598 FNL 2618 FWL BHL Sec 32 T08S R18E 2293 FSL 1011 FEL BHL Sec 32 T08S R18E 2293 FSL 1011 FEL BHL Sec 32 T08S R18E 2293 FSL 2297 FWL Sec 32 T08S R18E 2293 FSL 2297 FWL A3-047-51881 GMBU M-32-8-18 Sec 32 T08S R18E 1277 FSL 2297 FWL BHL Sec 32 T08S R18E 2397 FSL 2624 FWL BHL Sec 32 T08S R18E 1857 FNL 1823 FEL BHL Sec 32 T08S R18E 1271 FNL 1512 FWL BHL Sec 32 T08S R18E 1271 FNL 1512 FWL BHL Sec 32 T08S R18E 1271 FNL 1512 FWL BHL Sec 32 T08S R18E 1271 FNL 1512 FWL BHL Sec 32 T08S R18E 1857 FNL 0640 FWL BHL Sec 32 T08S R18E 1271 FNL 1512 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL BHL Sec 32 T08S R18E 1857 FNL 0634 FWL

Page 2

API# WELL NAME LOCATION

(Proposed PZ GREEN RIVER)

43-047-51884 GMBU S-32-8-18 Sec 32 T08S R18E 0566 FSL 2128 FEL BHL Sec 32 T08S R18E 1233 FSL 1069 FEL

This office has no objection to permitting the wells at this time.

Michael L. Coulthard
Digitally signed by Michael L. Coulthard
DN: cn=Michael L. Coulthard, o=Bureau of Land Management,
ou=Branch of Minerals, email=Michael_Coulthard@blm.gov, c=US
Date: 2011.08.19 09:57:42 -06'00'

bcc: File - Greater Monument Butte Unit

Division of Oil Gas and Mining

Central Files Agr. Sec. Chron Fluid Chron

MCoulthard:mc:8-19-11

From: Jim Davis

To: Hill, Brad; Mason, Diana

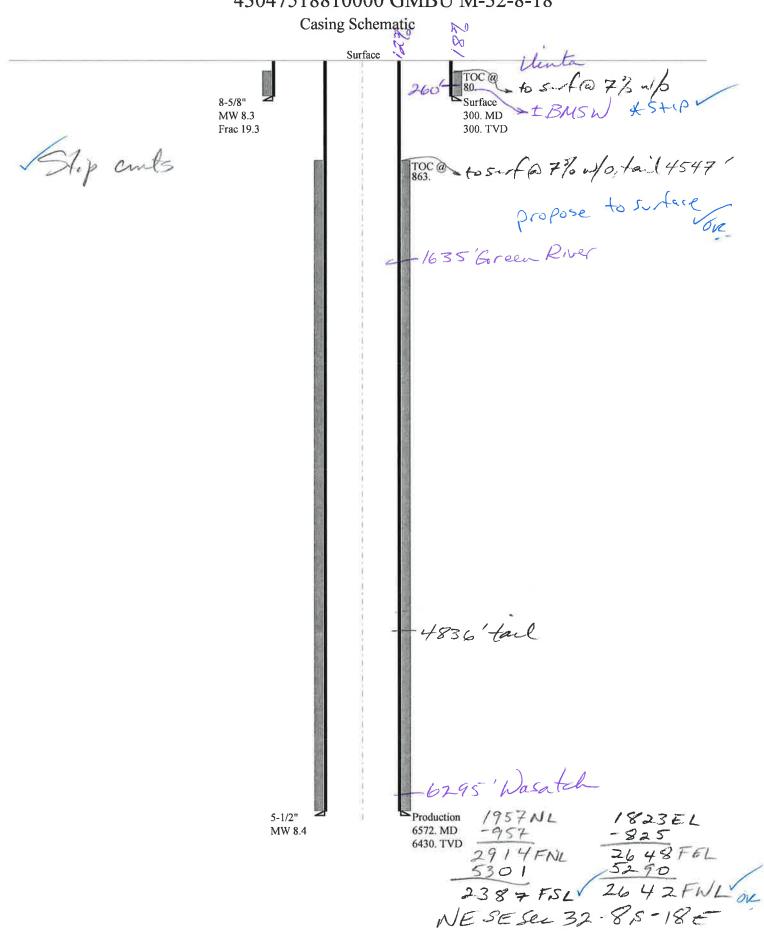
CC: Bonner, Ed; Garrison, LaVonne; mcrozier@newfield.com; teaton@newfield...

Date: 9/20/2011 3:45 PM **Subject:** Newfield APD approvals

The following APDs have been approved by SITLA including arch and paleo clearance.

4304751877 GMBU I-32-8-18 4304751878 GMBU H-32-8-18 4304751879 GMBU L-32-8-18 4304751880 GMBU R-32-8-18 4304751881 GMBU M-32-8-18 4304751882 GMBU G-32-8-18 4304751883 GMBU N-32-8-18 4304751884 GMBU S-32-8-18 4301350898 GMBU 1-2-9-15H 4301350906 GMBU R-2-9-15 4301350907 GMBU L-2-9-15 GMBU H-2-9-15 4301350908 4301350909 GMBU M-2-9-15 GMBU N-2-9-15 4301350910 4301350911 GMBU Q-2-9-15 Thanks.

Thanks


Jim Davis Utah Trust Lands Administration jimdavis1@utah.gov Phone: (801) 538-5156

BOPE REVIEW NEWFIELD PRODUCTION COMPANY GMBU M-32-8-18 43047518810000

Well Name		NEWFIELD PI	POD	OLICTION C	· O I	MDANY CMRII	N/I	32 8 18 4304	
String		Surf	T	rod		WIFAINT GIVIBU	I	-32-6-16 4304	
Casing Size(")			₩	==	╁		H.		
Setting Depth (TVD)		8.625	╫	.500	╁		II.		
Previous Shoe Setting Dept	th (TVD)	300	╬	430	╁	<u></u>	II.		
Max Mud Weight (ppg)	III (1 v D)	0	30	==	╂		11.		
		8.3	8.		+		11.		
BOPE Proposed (psi)		500	╬	000	+		1.		
Casing Internal Yield (psi)		2950	₩	810	+		11.		
Operators Max Anticipate	d Pressure (psi)	2784	8.	.3]],		
Calculations	Sur	f String				8.62	25	**	
Max BHP (psi)		.052*Settii	ng I	Depth*M	W	129	7		
								BOPE Ade	quate For Drilling And Setting Casing at Depth?
MASP (Gas) (psi)	Max	k BHP-(0.12*	Sett	ting Dept	h)=	93]	YES	air drill
MASP (Gas/Mud) (psi)	Max	BHP-(0.22*	Sett	ting Dept	h)=	63	1	YES	ОК
								*Can Full	Expected Pressure Be Held At Previous Shoe?
Pressure At Previous Shoe	Max BHP22*(Setting D	epth - Previou	us S	shoe Dept	h):	63]	NO	
Required Casing/BOPE To	est Pressure=					300]	psi	
*Max Pressure Allowed @	Previous Casing Shoe=					0	ī	psi *Assı	ımes 1psi/ft frac gradient
							=		
Calculations	Proc	l String				5.50	00	"	
Max BHP (psi)		.052*Settii	ng I	Depth*M`	W	2809	╝		
2510210111						-			quate For Drilling And Setting Casing at Depth?
MASP (Gas) (psi)		k BHP-(0.12*			_	1=11	╝	NO	
MASP (Gas/Mud) (psi)	Max	k BHP-(0.22*	Sett	ting Dept	h)=	1394	╝	YES	ОК
						-	_		Expected Pressure Be Held At Previous Shoe?
Pressure At Previous Shoe		epth - Previou	us S	Shoe Dept	h):	1460	╝	NO	Reasonable for area
Required Casing/BOPE Te						2000	╝	psi	
*Max Pressure Allowed @	Previous Casing Shoe=					300		psi *Assı	ımes 1psi/ft frac gradient
Calculations	S	tring			_			**	
Max BHP (psi)		.052*Settii	ng I	Depth*M'	W		╗		
						1	=	BOPE Ade	quate For Drilling And Setting Casing at Depth?
MASP (Gas) (psi)	Max	k BHP-(0.12*	Sett	ting Dept	h)=		╗	NO	i i
MASP (Gas/Mud) (psi)	Max	k BHP-(0.22*	Sett	ting Dept	h)=	=	Ŧ	NO I	
						-	i	*Can Full	Expected Pressure Be Held At Previous Shoe?
Pressure At Previous Shoe	Max BHP22*(Setting D	epth - Previou	us S	Shoe Dept	h):		╗	NO	i
Required Casing/BOPE Te	est Pressure=						╗	psi	
*Max Pressure Allowed @	Previous Casing Shoe=						i	psi *Assı	ımes 1psi/ft frac gradient
		. •					_	"	
Calculations	S	tring	Т	D 41- * \ \ (1)	117.		=	"	
Max BHP (psi)		.052*Settii	ng I	⊃еріп*М'	vv:	<u> </u>	4	RODE Ada	quate For Drilling And Setting Casing at Depth?
MASP (Gas) (psi)	May	k BHP-(0.12*	Sett	ting Dent	h)=	_	=		quare For Drining And Setting Casing at Depth?
					_	1	╣	NO	
MASP (Gas/Mud) (psi)	Iviax	k BHP-(0.22*	sell	ınıg Depti	11)=		4	*Con Full	Evported Prossure Po Hold At Provious Cha-2
Pressure At Previous Shoe	Max RHP_ 22*(Satting D.	enth - Previou	ne C	hoe Dent	р)-		=		Expected Pressure Be Held At Previous Shoe?
		cpm - r1cv100	us S	moc Dept	11)	-	\parallel	NO noi	
Required Casing/BOPE Te	est rressure=					_[Ш	psi	

*Max Pressure Allowed @ Previous Casing Shoe= psi *Assumes 1psi/ft frac gradient

43047518810000 GMBU M-32-8-18

Well name:

43047518810000 GMBU M-32-8-18

Operator:

NEWFIELD PRODUCTION COMPANY

Project ID:

Surface String type:

43-047-51881

Location:

UINTAH

COUNTY

Design parameters:

Collapse

8.330 ppg Mud weight: Design is based on evacuated pipe.

Minimum design factors:

Collapse: Design factor

1.125

Environment: H2S considered?

Surface temperature: Bottom hole temperature:

No 74 °F 78 °F

Temperature gradient:

1.40 °F/100ft

Minimum section length:

100 ft

Burst:

Design factor

1.00

Cement top:

80 ft

<u>Burst</u>

Max anticipated surface

No backup mud specified.

pressure: Internal gradient: Calculated BHP

264 psi 0.120 psi/ft

300 psi

8 Round STC:

Body yield:

Tension:

8 Round LTC: 1.70 (J) Buttress: 1.60 (J) Premium: 1.50 (J)

1.50 (B)

1.80 (J)

Tension is based on air weight. Neutral point: 262 ft Non-directional string.

Re subsequent strings:

Next setting depth: Next mud weight: Next setting BHP:

6,430 ft 8.400 ppg 2,806 psi 19.250 ppg

Fracture mud wt: Fracture depth: Injection pressure:

300 ft 300 psi

Run	Segment		Nominal		End	True Vert	Measured	Drift	Est.
Seq	Length	Size	Weight	Grade	Finish	Depth	Depth	Diameter	Cost
	(ft)	(in)	(lbs/ft)			(ft)	(ft)	(in)	(\$)
1	300	8.625	24.00	J-55	ST&C	300	300	7.972	1544
Run	Collapse	Collapse	Collapse	Burst	Burst	Burst	Tension	Tension	Tension
Seq	Load	Strenath	Design	Load	Strength	Design	Load	Strength	Design
•	(psi)	(psi)	Factor	(psi)	(psi)	Factor	(kips)	(kips)	Factor
1	130	1370	10.557	300	2950	9.83	7.2	244	33.90 J

Prepared

Helen Sadik-Macdonald

Div of Oil, Gas & Mining

Phone: 801 538-5357 FAX: 801-359-3940

Date: October 27,2011 Salt Lake City, Utah

Collapse is based on a vertical depth of 300 ft, a mud weight of 8.33 ppg. The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

43047518810000 GMBU M-32-8-18 Well name:

NEWFIELD PRODUCTION COMPANY Operator:

Production

String type: Project ID: 43-047-51881

UINTAH COUNTY Location:

Design parameters: Minimum design factors: **Environment:**

Collapse: H2S considered? Collapse No 74 °F Mud weight: 8.400 ppg Design factor 1.125 Surface temperature:

Design is based on evacuated pipe. Bottom hole temperature: 164 °F 1.40 °F/100ft Temperature gradient:

Minimum section length: 100 ft

1.80 (J)

Burst:

1.00 863 ft Design factor Cement top: **Burst**

Max anticipated surface

pressure: 1,391 psi Internal gradient: 0.220 psi/ft

Tension: Calculated BHP 2,806 psi 8 Round STC:

8 Round LTC: 1.80 (J) Buttress: 1.60 (J) No backup mud specified.

1.50 (J) Premium: Body yield: 1.60 (B)

> Tension is based on air weight. Neutral point: 5,733 ft

Directional Info - Build & Hold Kick-off point 600 ft Departure at shoe: 1263 ft

Maximum dogleg: 1.5 °/100ft Inclination at shoe: 13.19°

Run	Sagmont		Nominal		End	True Vert	Measured	Drift	Est.
	Segment	0:		•					
Seq	Length	Size	Weight	Grade	Finish	Depth	Depth	Diameter	Cost
	(ft)	(in)	(lbs/ft)			(ft)	(ft)	(in)	(\$)
1	6572	5.5	15.50	J-55	LT&C	6430	6572	4.825	23206
Run	Collapse	Collapse	Collapse	Burst	Burst	Burst	Tension	Tension	Tension
Seq	Load	Strength	Design	Load	Strength	Design	Load	Strength	Design
	(psi)	(psi)	Factor	(psi)	(psi)	Factor	(kips)	(kips)	Factor
1	2806	4040	1.440	2806	4810	1.71	99.7	217	2.18 J

Helen Sadik-Macdonald Phone: 801 538-5357 Date: October 27,2011 Prepared Div of Oil, Gas & Mining FAX: 801-359-3940 Salt Lake City, Utah

Collapse is based on a vertical depth of 6430 ft, a mud weight of 8.4 ppg The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Collapse strength is (biaxially) derated for doglegs in directional wells by multiplying the tensile stress by the cross section area to calculate a

VIA ELECTRONIC DELIVERY

November 8, 2011

State of Utah, Division of Oil, Gas and Mining ATTN: Diana Mason P.O. Box 145801 Salt Lake City, UT 84114-5801

RE: Directional Drilling

GMBU M-32-8-18

Greater Monument Butte (Green River) Unit

Surface Hole: T8S-R18E Section 32: SWNE (ML-22058)

1957' FNL 1823' FEL

At Target: T8S-R18E Section 32: NESW (ML-22058)

2397' FSL 2624' FWL

Uintah County, Utah

Dear Ms. Mason:

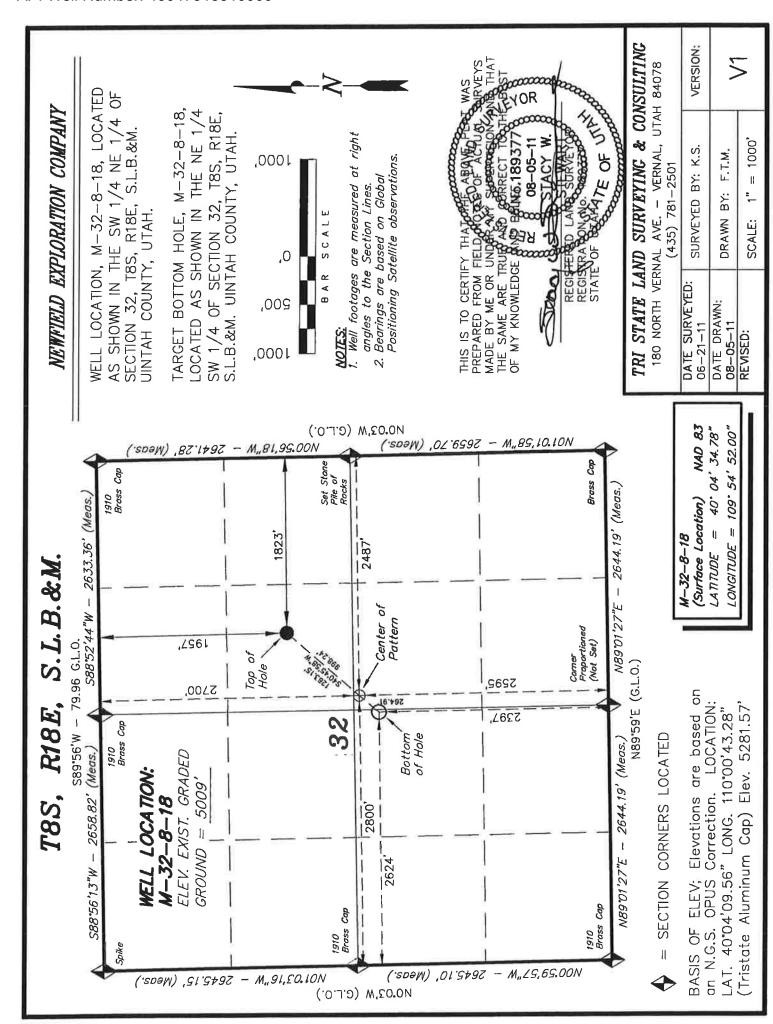
Pursuant to the filing by Newfield Production Company ("NPC") of an Application for Permit to Drill the above referenced well dated 8/16/2011, a copy of which is attached, and in accordance with Oil and Gas Conservation Rule R649-3-11, NPC hereby submits this letter as notice of our intention to directionally drill this well.

The surface hole and target locations of this well are both within the boundaries of the Greater Monument Butte Unit (UTU-87538X), of which Newfield certifies that it is the operator. Further, Newfield certifies that all lands within 460 feet of the entire directional well bore are within the Greater Monument Butte Unit.

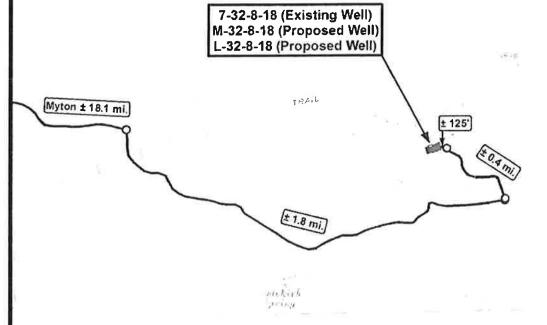
NPC is permitting this well as a directional well in order to mitigate surface disturbance by utilizing preexiting roads and pipelines.

NPC hereby requests our application for permit to drill be granted pursuant to R649-3-11. If you have any questions or require further information, please contact the undersigned at 303-383-4153 or by email at pburns@newfield.com. Your consideration in this matter is greatly appreciated.

Sincerely,


Newfield Production Company

Peter Burns Land Associate


STATE OF UTAH DEPARTMENT OF NATURAL RESOURCES DIVISION OF OIL, GAS AND MINING

AMENDED REPORT (highlight changes)

								(1	ngringr	it Changes)	
		APPLICA	TION FOR	PERMIT T	O DRILL			5. MINERAL LEASE I ML-22058	NO.	6. SURFACE: State	
1A, TYPE OF W	ORK:	ORILL 🔽	REENTER [DEEPEN				7. IF INDIAN, ALLOT		RIBE NAME:	
B. TYPE OF W	ELL: OIL 🗸	8. UNIT or CA AGREEMENT NAME: Greater Monument Butte									
2. NAME OF OP								9, WELL NAME and N			
	Production C	Company						GMBU M-3	2-8-1	8	
3. ADDRESS OF Route #3 E		CITY Mytor	,	LIT 8/	1052	PHONE NUMBER: (435) 646-3721		10. FIELD AND POOI	HE TO SHARE THE PARTY OF THE PA	.DCAT:	
	F WELL (FOOTAG		STA	TE UT ZIP 84	1002	(433) 646-3721		Monument E		MISHIP PANCE	
AT SURFACE:			1823' FEL 5	Sec 32 T8S	R18E			MERIDIAN:	-870		
		NE: NE/SW		. 2624' FWL		8S R18E		SWNE 32	88	18E	
14. DISTANCE II	MILES AND DIRE	ECTION FROM NEA	REST TOWN OR POS	ST OFFICE:			-	12 COUNTY:		13, STATE:	
			ast of Myton,					Uintah	- 1	UTAH	
15. DISTANCE T	O NEAREST PROF	PERTY OR LEASE L	INE (FEET)	16. NUMBER C	F ACRES IN LEAS	SE:	17. N	UMBER OF ACRES ASS	SIGNED 1	TO THIS WELL:	
Approx. 2	487' f/Ise lin	e, NA' f/unit	line			640.00 acres	1			20 acres	
18. DISTANCE T	O NEAREST WELL R) ON THIS LEASE	(DRILLING, COMP	LETED, OR	19. PROPOSE	DEPTH:		20. BC	OND DESCRIPTION:			
Approx. 1		: (FEE1)				6,572		#B001834			
21. ELEVATIONS	(SHOW WHETHE	R DF, RT, GR, ETC	.):	22. APPROXIM	ATE DATE WORK	(WILL START:	23. ES	STIMATED DURATION:			
5009' GL				17	5 Ortr	116.	(15	b) days from SI	PUD t	o rig release	
24.			PROPOSI	ED CASING A	ND CEMEN	TING PROGRAM					
SIZE OF HOLE	CASING SIZE,	GRADE, AND WEIG	HT PER FOOT	SETTING DEPTH		CEMENT TYPE, QU	ANTITY,	YIELD, AND SLURRY V	VEIGHT		
12 1/4	8 5/8	J-55	24.0	300	Class G w	//2% CaCl	138 s	sx +/-	1.17	15.8	
7 7/8	5 1/2	J-55	15.5	6,572	Lead(Prem Lite II) 316			6 sx +/-		11.0	
					Tail (50/50	Poz)	363 s	sx +/- 1.24		14.3	
							_				
25.				ATTA	CHMENTS					-	
VERIFY THE FOLI	LOWING ARE ATT.	ACHED IN ACCORD	ANCE WITH THE UT			ENERAL RULES:	_				
✓ WELL PLA	T OR MAP PREPA	RED BY LICENSED	SURVÉYOR OR EN	GINEER	✓ com	ID) ETE DRILLING DI ANI					
			PPROVAL FOR USE		1 —	COMPLETE DRILLING PLAN FORM 5, IF OPERATOR IS PERSON OR COMPANY OTHER THAN THE LEASE OWNER					
21122110	2 or bivioloit of	THE CHOILD A	T NOVACTOR OSE	OI WATER	T FOR	M 5, IF OPERATOR IS PE	75UN UF	COMPANY OTHER IN	TAN IHE	LEASE OWNER	
	Mandid	Grazian				Desulates Co.	!-!!-			*	
NAME (PLEASE P	Mandie	VIOZIEI 2	1 ,		TITLE	Regulatory Spe	ecialis	it			
SIGNATURE	// le	mdro	Crosie	<u> </u>	DATE	8/16	11				
his space for State	use only)		0								
API NUMBER ASSI	GNED:				APPROVAL:						

Access Road Map

Legend

Existing Road

THE PARCEL INFORMATION SHOWN HAS NOT BEEN SURVEYED BY TRI-STATE LAND SURVEYING, INC. - TRI-STATE DOES NOT WARRANTY PROPERTY PARCEL DATA OR ANY ASSOCIATED INFORMATION. A PROPERTY SURVEY IS REQUIRED TO DETERMINE THE ACTUAL LOCATION OF PROPERTY LINES AND SHOW ACCURATE DISTANCES ACROSS PARCELS.

P: (435) 781-2501 F: (435) 781-2518

🛝 180 NORTH VERNAL AVE. VERNAL, UTAH 84078

VERSION: DRAWN BY: C.H.M. REVISED: 08-03-2011 DATE: 1"= 2,000" SCALE:

NEWFIELD EXPLORATION COMPANY

 Ω_{M}

· inc · INU

7-32-8-18 (Existing Well) M-32-8-18 (Proposed Well) L-32-8-18 (Proposed Well)

SEC. 32, T8S, R18E, S.L.B.&M. Uintah County, UT.

TOPOGRAPHIC MAP

SHEET В

ON-SITE PREDRILL EVALUATION

Utah Division of Oil, Gas and Mining

Operator NEWFIELD PRODUCTION COMPANY

Well Name GMBU M-32-8-18

API Number 43047518810000 APD No 4460 Field/Unit EIGHT MILE FLAT

Location: 1/4,1/4 SWNE **Sec** 32 **Tw** 8.0S **Rng** 18.0E 1957 FNL 1823 FEL

GPS Coord (UTM) Surface Owner

Participants

M. Jones (UDOGM), T. Eaton (Newfield).

Regional/Local Setting & Topography

This proposed well is staked on an existing well location for the 7-32-8-18 well. A small additional pad disturbance on the west side is anticipated for the location. The old pit area will be utililized. The topography surrounding the location is rolling, gravely, low sage hills. With dry wash drainages running in various directions throughout the area. The site is approximately 18 road miles southeast Myton, Utah. The drainage diversion on the hill to the north of the location should be extended to the west to capture and keep more runoff from entering the pad.

Surface Use Plan

Current Surface Use

Grazing

Wildlfe Habitat

Existing Well Pad

New Road Miles Well Pad Src Const Material Surface Formation

0 Width 120 Length 311 Onsite

Ancillary Facilities

Waste Management Plan Adequate?

Environmental Parameters

Affected Floodplains and/or Wetlands N

Flora / Fauna

existing well pad.

Soil Type and Characteristics

gravely clay.

Erosion Issues N

Sedimentation Issues N

Site Stability Issues N

Drainage Diverson Required? N

Berm Required? Y

mainatian pad berms.

11/8/2011 Page 1

Erosion Sedimentation Control Required? N

Paleo Survey Run? Y Paleo Potental Observed? N Cultural Survey Run? Y Cultural Resources? N

Reserve Pit

Site-Specific Factors	Site Ra		
Distance to Groundwater (feet)	>200	0	
Distance to Surface Water (feet)	>1000	0	
Dist. Nearest Municipal Well (ft)	>5280	0	
Distance to Other Wells (feet)		20	
Native Soil Type	Mod permeability	10	
Fluid Type	Fresh Water	5	
Drill Cuttings	Normal Rock	0	
Annual Precipitation (inches)		0	
Affected Populations			
Presence Nearby Utility Conduits	Not Present	0	
	Final Score	35	1 Sensitivity Level

Characteristics / Requirements

Dugout earthen (80' x 40' x 8').

Closed Loop Mud Required? N Liner Required? Y Liner Thickness 16 Pit Underlayment Required? N

Other Observations / Comments

Mark Jones 8/31/2011 **Evaluator Date / Time**

11/8/2011 Page 2

Application for Permit to Drill Statement of Basis

11/8/2011 Utah Division of Oil, Gas and Mining

Page 1

APD No	API WellNo			Statu	s We	ell Type	Surf Own	er CBM	
4460	43047518810000 S				A OV	V	S	No	
Operator	NEWFIELD PI	RODUCT	ION	COMPANY	rface Owner-APD				
Well Name	GMBU M-32-8	8-18			Un	nit	GMBU (GRRV)		
Field	EIGHT MILE	FLAT			pe of Work	DRILL			
Location	SWNE 32 8	8S 18E	S	1957 FNL	1823 FEL	GPS Coord (UTM)	592567E	4436799N	

Geologic Statement of Basis

Newfield proposes to set 300' of surface casing at this location. The depth to the base of the moderately saline water at this location is estimated to be at a depth of 260'. A search of Division of Water Rights records shows no water wells within a 10,000 foot radius of the center of Section 32. The surface formation at this site is the Uinta Formation. The Uinta Formation is made up of interbedded shales and sandstones. The sandstones are mostly lenticular and discontinuous and should not be an interconnected, high volume source of useable ground water. The proposed surface casing should adequately protect useable ground water in this area.

Brad Hill 9/27/2011
APD Evaluator Date / Time

Surface Statement of Basis

This proposed well is staked on an existing well location for the 7-32-8-18 well. A small additional pad disturbance on the west side is anticipated for the location. The old pit area will be utililized. The topography surrounding the location is rolling, gravely, low sage hills. With dry wash drainages running in various directions throughout the area. The site is approximately 18 road miles southeast Myton, Utah. The drainage diversion on the hill to the north of the location should be extended to the west to capture and keep more runoff from entering the pad.

Mark Jones 8/31/2011
Onsite Evaluator Date / Time

Conditions of Approval / Application for Permit to Drill

Category	Condition
Pits	A synthetic liner with a minimum thickness of 16 mils shall be properly installed and maintained in the reserve pit.
Surface	The well site shall be bermed to prevent fluids from leaving the pad.
Surface	Drainages adjacent to the proposed pad shall be diverted around the location. Extend the drainage diversion on the hill north of the location farther west to the rough edge of the pad.
Surface	The reserve pit shall be fenced upon completion of drilling operations.

RECEIVED: November 08, 2011

WORKSHEET APPLICATION FOR PERMIT TO DRILL

APD RECEIVED: 8/16/2011 **API NO. ASSIGNED:** 43047518810000

WELL NAME: GMBU M-32-8-18

OPERATOR: NEWFIELD PRODUCTION COMPANY (N2695) **PHONE NUMBER:** 435 646-4825

CONTACT: Mandie Crozier

PROPOSED LOCATION: SWNE 32 080S 180E **Permit Tech Review:**

> **SURFACE: 1957 FNL 1823 FEL Engineering Review:**

> **BOTTOM:** 2397 FSL 2624 FWL Geology Review:

COUNTY: UINTAH

LATITUDE: 40.07638 LONGITUDE: -109.91437 UTM SURF EASTINGS: 592567.00 **NORTHINGS: 4436799.00**

FIELD NAME: EIGHT MILE FLAT

LEASE TYPE: 3 - State

LEASE NUMBER: ML-22058 PROPOSED PRODUCING FORMATION(S): GREEN RIVER

SURFACE OWNER: 3 - State **COALBED METHANE: NO**

RECEIVED AND/OR REVIEWED: LOCATION AND SITING:

 PLAT R649-2-3.

Unit: GMBU (GRRV) Bond: STATE/FEE - B001834

Potash R649-3-2. General

Oil Shale 190-3 R649-3-3. Exception

Oil Shale 190-13 **Drilling Unit**

Board Cause No: Cause 213-11 Water Permit: 437478

Effective Date: 11/30/2009 **RDCC Review:**

Siting: Suspends General Siting **Fee Surface Agreement**

Intent to Commingle ▼ R649-3-11. Directional Drill

Commingling Approved

Oil Shale 190-5


Comments: Presite Completed

Stipulations: 5 - Statement of Basis - bhill

15 - Directional - dmason

25 - Surface Casing - ddoucet 27 - Other - bhill

API Well No: 43047518810000

State of Utah

DEPARTMENT OF NATURAL RESOURCES

MICHAEL R. STYLER
Executive Director

Division of Oil, Gas and Mining

JOHN R. BAZA
Division Director

Permit To Drill

Well Name: GMBU M-32-8-18 **API Well Number:** 43047518810000

Lease Number: ML-22058 Surface Owner: STATE Approval Date: 11/8/2011

Issued to:

NEWFIELD PRODUCTION COMPANY, Rt 3 Box 3630, Myton, UT 84052

Authority:

Pursuant to Utah Code Ann. §40-6-1 et seq., and Utah Administrative Code R649-3-1 et seq., the Utah Division of Oil, Gas and Mining issues conditions of approval, and permit to drill the listed well. This permit is issued in accordance with the requirements of Cause 213-11. The expected producing formation or pool is the GREEN RIVER Formation(s), completion into any other zones will require filing a Sundry Notice (Form 9). Completion and commingling of more than one pool will require approval in accordance with R649-3-22.

Duration:

This approval shall expire one year from the above date unless substantial and continuous operation is underway, or a request for extension is made prior to the expiration date

General:

Compliance with the requirements of Utah Admin. R. 649-1 et seq., the Oil and Gas Conservation General Rules, and the applicable terms and provisions of the approved Application for permit to drill.

Conditions of Approval:

In accordance with Utah Admin. R.649-3-11, Directional Drilling, the operator shall submit a complete angular deviation and directional survey report to the Division within 30 days following completion of the well.

Compliance with the Conditions of Approval/Application for Permit to Drill outlined in the Statement of Basis (copy attached).

Production casing cement shall be brought up to or above the top of the unitized interval for the Greater Monument Butte Unit (Cause No. 213-11).

Surface casing shall be cemented to the surface.

Additional Approvals:

The operator is required to obtain approval from the Division of Oil, Gas and mining before performing any of the following actions during the drilling of this well:

- Any changes to the approved drilling plan contact Dustin Doucet
- Significant plug back of the well contact Dustin Doucet
- Plug and abandonment of the well contact Dustin Doucet

API Well No: 43047518810000

Notification Requirements:

The operator is required to notify the Division of Oil, Gas and Mining of the following actions during drilling of this well:

- Within 24 hours following the spudding of the well contact Carol Daniels OR
- submit an electronic sundry notice (pre-registration required) via the Utah Oil & Gas website at http://oilgas.ogm.utah.gov
- 24 hours prior to testing blowout prevention equipment contact Dan Jarvis
- 24 hours prior to cementing or testing casing contact Dan Jarvis
- Within 24 hours of making any emergency changes to the approved drilling program contact Dustin Doucet
- 24 hours prior to commencing operations to plug and abandon the well contact Dan Jarvis

Contact Information:

The following are Division of Oil, Gas and Mining contacts and their telephone numbers (please leave a voicemail message if the person is not available to take the call):

- Carol Daniels 801-538-5284 office
- Dustin Doucet 801-538-5281 office

801-733-0983 - after office hours

• Dan Jarvis 801-538-5338 - office

801-231-8956 - after office hours

Reporting Requirements:

All reports, forms and submittals as required by the Utah Oil and Gas Conservation General Rules will be promptly filed with the Division of Oil, Gas and Mining, including but not limited to:

- Entity Action Form (Form 6) due within 5 days of spudding the well
- Monthly Status Report (Form 9) due by 5th day of the following calendar month
- Requests to Change Plans (Form 9) due prior to implementation
- Written Notice of Emergency Changes (Form 9) due within 5 days
- Notice of Operations Suspension or Resumption (Form 9) due prior to implementation
- Report of Water Encountered (Form 7) due within 30 days after completion
- Well Completion Report (Form 8) due within 30 days after completion or plugging

Approved By:

For John Rogers Associate Director, Oil & Gas

BLM - Vernal Field Office - Notification Form

Operator Newfield Exploration Rig Name/# Ross 29 Submitted By Branden Arnold Phone Number 435-401-0223 Well Name/Number GMBU M-32-8-18 Qtr/Qtr SW/NE Section 32 Township 8S Range 18E Lease Serial Number ML-22058 API Number 43-047-51881									
<u>Spud Notice</u> – Spud is the initial spudding of the well, not drilling out below a casing string.									
Date/Time <u>6/28/12</u> <u>4:00</u> AM ☐ PM ⊠									
Casing — Please report time casing run starts, not cementing times. Surface Casing Intermediate Casing Production Casing Liner Other									
Date/Time <u>6/28/12</u> <u>9:00</u> AM ☐ PM ⊠									
BOPE Initial BOPE test at surface casing point BOPE test at intermediate casing point 30 day BOPE test Other									
Date/Time AM PM									
Remarks									

OPERATOR: NEWFIELD PRODUCTION COMPANY ADDRESS: RT. 3 BOX 3630

OPERATOR ACCT, NO.

N2695

12

ENTITY ACTION FORM -FORM 6							MYTON, UT 84052								
ACTION	CURRENT	NEW	API NUMBER	WELL NAME		WE	LL LOCAT	ION	1	SPUD	EFFECTIV				
CODE	ENTITY NO	ENTITY NO.			00	\$C	IΡ	RG	COUNTY	DATE	DATE				
В	99999	17400	4301351047	GMBU S-4-9-17	NWSE	4	98	17E	DUCHESNE	6/30/2012	7/18				
WELL 1 COM	MENTS:		•												

BHL: Sese GRRV API NUMBER WELL NAME WELL LOCATION SPUD EFFECTIVE CODE ENTITY NO. ENTITY NO QQ sc TP RG COUNTY DATE DATE 85 1XE 18/12 **GMBU M-32-8-18 SWNE** 32 6/29/2012 В 99999 17400 4304751881 UINTAH

BHL: NOSW WELL LOCATION ACTION API NUMBER WELL NAME SPUD EFFECTIVE ENTITY NO (X) COUNTY 8S 17E DUCHESNE 6/26/2012 В 4301351225 **GMBU F-36-8-17** SWNW 99999 17400

BHL: SWNW ACTION CURRENT NEW API NUMBER WELL NAME SPUD EFFECTIVE ENTITY NO. ENTITY NO. SC TP RG COUNTY DATE **GMBU N-36-8-17** SWNW 36 85 17E UINTAH 6/27/2012 В 99999 17400 4304751540

BHL Nesus WELL NAME WELL LOCATION
C TP RG SPUD EFFECTIVE NEW API NUMBER ACTION CURRENT DATE CODE ENTITY NO. ENTITY NO. 00 SC COUNTY DATE 9S 16E DUCHESNE 7/3/2012 **GMBU M-6-9-16 NWSE** 4301351115 В 99999 17400

EFFECTIVE SPUD WELL NAME WELL LOCATION API NUMBER ACTION CURRENT SC TP RG COUNTY DATE DATE QQ ENTITY NO. CODE **ENTITY NO** 7/4/2012 3W DUCHESNE **SESW** 2 35 **LUSTY 14-2-3-3W** A 99999 4301351370

ACTION CODES (See instructions on back of form)

A - 1 new entity for new well (single well only)

B - / well to existing entity (group or unit well)

C - from one existing entity to another existing entity

D- well from one existing entity to a new entity

E - ther (explain in comments section)

RECEIVED

JUL 1 | 2012

Confidential

Tabitha Timothy

Production Clerk

07/09/12

STATE OF UTAH

	5. LEASE DESIGNATION AND SERIAL NUMBER: UTAH STATE ML-22058			
SUNDRY	6. IF INDIAN, ALLOTTEE OR TRIBE NAME:			
Do not use this form for proposals to di wells, or to drill horizon	7. UNIT of CA AGREEMENT NAME: GMBU			
1 TYPE OF WELL	8. WELL NAME and NUMBER:			
OIL WELL	GMBU M-32-8-18			
2. NAME OF OPERATOR:				9. API NUMBER:
NEWFIELD PRODUCTION COM	MPANY			4304751881 10. FIELD AND POOL, OR WILDCAT:
3. ADDRESS OF OPERATOR: Route 3 Box 3630	CITY Myton STATE UT	ZIP 84052	PHONE NUMBER 435.646.3721	GREATER MB UNIT
	FAL 1823 FEL			county: UINTAH
OTR/OTR, SECTION, TOWNSHIP, RANGE	. MERIDIAN: , 32, T8S, R18E			STATE: UT
11. CHECK APPRO	PRIATE BOXES TO INDICATI	E NATURE O	F NOTICE, REP	ORT, OR OTHER DATA
TYPE OF SUBMISSION		TYF	PE OF ACTION	
T warran on numerum	ACIDIZE	DEEPEN		REPERFORATE CURRENT FORMATION
NOTICE OF INTENT (Submit in Duplicate)	ALTER CASING	FRACTURE TR	REAT	SIDETRACK TO REPAIR WELL
Approximate date work will	CASING REPAIR	NEW CONSTR	UCTION	TEMPORARITLY ABANDON
Approximate date work with	CHANGE TO PREVIOUS PLANS	OPERATOR C	HANGE	TUBING REPAIR
	CHANGE TUBING	PLUG AND AE		VENT OR FLAIR
	I=	=	SANDON	
SUBSEOUENT REPORT (Submit Original Form Only)	CHANGE WELL NAME	☐ PLUG BACK		WATER DISPOSAL
Date of Work Completion:	CHANGE WELL STATUS	(START/STOP)	WATER SHUT-OFF	
	COMMINGLE PRODUCING FORMATIONS	RECLAMATIO	ON OF WELL SITE	X OTHER: - Spud Notice
07/03/2012	CONVERT WELL TYPE	RECOMPLETE	E - DIFFERENT FORMATION	
On 6/29/12 MIRU Ross #2	OMPLETED OPERATIONS. Clearly show a 29. Spud well @4:00 PM. Drill 325' of with 160 sks of class "G" w/ 2% CaC t to pit. WOC.	f 12 1/4" hole wi	ith air mist. TIH W/	7 Jt's 8 5/8" J-55 24# csgn. Set @
				RECEIVED
				AUG 0 \$ 2012
				DIV. OF OIL, GAS & MINING

(This space for State use only)

RECEIVED AUG 0 6 2012

Casing / Liner Detail

Prospect Monument Butte Foreman Run Date: String Type Surface, 8.625", 24#, J-55, STC (Generic) - Detail From Top To Bottom - Depth Length JTS Description OD 323.99 10' BK 0	
String Type Surface, 8.625", 24#, J-55, STC (Generic) - Detail From Top To Bottom - Depth Length JTS Description OD	
Surface, 8.625", 24#, J-55, STC (Generic) - Detail From Top To Bottom - Depth Length JTS Description OD	
- Detail From Top To Bottom - Depth Length JTS Description OD	
- Detail From Top To Bottom - Depth Length JTS Description OD	
323.99	
324.57 1.42 Wellhead	ID
324.57 1.42 Wellhead	
10.00 269.37 6 8 5/8 Casing 8.625	
10.00 209.37 0 Chec lient	
279.37 44.30 1 Shoe Jiont 8.625	
323.67 0.90 1 Guide Shoe 8.625	
324.57	
Cement Detail	
Cement Company: BJ	
Slurry # of Sacks Weight (ppg) Yield Volume (ft³) Description - Slurry Class and Additives Slurry 1 160 15.8 1.17 187.2 Class G+2%kcl+.25#CF	
Stab-In-Job? No Cement To Surface? Yes	
BHT: 0 Est. 10p of Comont.	
Initial Circulation Pressure:	
Initial Circulation Rate:	
Final Circulation Pressure:	
Prilate Circulation Nate.	
Displacement raid. No.	
Displacement Rate:	
Displacement Volume:	
Wild Retains.	
Centralizer Type And Placement: Middle of first, top of second and third for a total of three.	

Sundry Number: 30619 API Well Number: 43047518810000

	STATE OF UTAH		FORM 9
ι	DEPARTMENT OF NATURAL RESOUR DIVISION OF OIL, GAS, AND MI		5.LEASE DESIGNATION AND SERIAL NUMBER: ML-22058
SUNDR	RY NOTICES AND REPORTS	ON WELLS	6. IF INDIAN, ALLOTTEE OR TRIBE NAME:
Do not use this form for pro current bottom-hole depth, I FOR PERMIT TO DRILL form	7.UNIT or CA AGREEMENT NAME: GMBU (GRRV)		
1. TYPE OF WELL Oil Well			8. WELL NAME and NUMBER: GMBU M-32-8-18
2. NAME OF OPERATOR: NEWFIELD PRODUCTION CO	OMPANY		9. API NUMBER: 43047518810000
3. ADDRESS OF OPERATOR: Rt 3 Box 3630 , Myton, UT	, 84052 435 646-482	PHONE NUMBER: 25 Ext	9. FIELD and POOL or WILDCAT: EIGHT MILE FLAT
4. LOCATION OF WELL FOOTAGES AT SURFACE: 1957 FNL 1823 FEL			COUNTY: UINTAH
QTR/QTR, SECTION, TOWNSH Qtr/Qtr: SWNE Section: 3	HIP, RANGE, MERIDIAN: 32 Township: 08.0S Range: 18.0E Meri	dian: S	STATE: UTAH
11. CHECI	K APPROPRIATE BOXES TO INDICA	TE NATURE OF NOTICE, RE	PORT, OR OTHER DATA
TYPE OF SUBMISSION		TYPE OF ACTION	
	ACIDIZE	ALTER CASING	CASING REPAIR
NOTICE OF INTENT Approximate date work will start:	CHANGE TO PREVIOUS PLANS	CHANGE TUBING	CHANGE WELL NAME
	CHANGE WELL STATUS	COMMINGLE PRODUCING FORMATION	s CONVERT WELL TYPE
SUBSEQUENT REPORT Date of Work Completion:	DEEPEN	FRACTURE TREAT	☐ NEW CONSTRUCTION
	OPERATOR CHANGE	PLUG AND ABANDON	PLUG BACK
SPUD REPORT	✓ PRODUCTION START OR RESUME	RECLAMATION OF WELL SITE	RECOMPLETE DIFFERENT FORMATION
Date of Spud:	REPERFORATE CURRENT FORMATION	SIDETRACK TO REPAIR WELL	TEMPORARY ABANDON
	TUBING REPAIR	VENT OR FLARE	WATER DISPOSAL
✓ DRILLING REPORT	WATER SHUTOFF	SI TA STATUS EXTENSION	APD EXTENSION
Report Date: 8/24/2012		STIA STATUS EXTENSION	
	WILDCAT WELL DETERMINATION	☐ OTHER	OTHER:
The above well w	COMPLETED OPERATIONS. Clearly show yas placed on production or duction Start Sundry resent	n 08/24/2012 at 08:00	
NAME (PLEASE PRINT)	PHONE NUMI	BER TITLE	
Jennifer Peatross	435 646-4885	Production Technician	
SIGNATURE N/A		DATE 10/3/2012	

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM APPROVED OMB NO. 1004-0137 Expires: July 31, 2010

WELL COMPLETION OR RECOMPLETION REPORT AND LOG

	Wi	ELL CO	MPLI	ETIOI	N OR R	ECOMPLE	TION	REPORT	AND LO	OG			1	ease Seri 22058	al No.	
la. Type of V	Well Completion:	✓Oil V ✓ New	Well Well	☐ Ga	as Well ork Over	Dry Deepen D	Other Plug	Back 🗖 Dit	f. Resvr.,				NA		Allottee or T	
		Othe						<u>.</u> .					7. U GMI	nit or CA 3U (GR	A Agreement	t Name and No.
2. Name of ONEWFIELD	Operator DEXPLOR	RATION (COMP	ANY									8. L		ne and Well	No.
3. Address	1401 17TH S							3a. Phone (435) 64		de are	a code)		9. A	FI Well 1	No.	
				-		ance with Feder	al requ	1 1	R	ECI	EIVE	ED	10. 1	Field and	Pool or Exp	
At surface	2 1057' EN	JI 9 100	2' EE1	(Q\A//N	IE) SEC	. 32, T8S, R18	DE /N/I	22050)	חר	C 1	2 1	04 2			NT BUTTE	
	- 1901 FI	NL 0. 102.) FEL	(SVVI	NE) SEC.	. 32, 163, Ki	DE (IVIE	22036)	DE	l I	3 2	UIZ	S	Survey or	г Атеа	32, T8S, R18E
At top pro	d. interval r	eported be	low 26	617' FS	SL & 242	9' FEL (NW/S	E) SE	C. 32, T8S, F	18FV:WF	01 2	eas L	MMNO	12. (County o	r Parish	13. State
At total de						EC. 32, T8S, F							i i	TAH		UT
14. Date Spi 06/29/201	udded		15. 1		D. Reache			16. Date Con		/24/2	2012				ns (DF, RKI 5019' KB	3, RT, GL)*
18. Total De	epth: MD		1077	23/201		g Back T.D.:	MD 6	3511'				dge Plug	Set:	MD	019 KB	
21. Type El		O 6433' er Mechani	cal Log	s Run (Submit cop	y of each)	TVD	6372	2	2. W	as well	cored?	Z N		Yes (Submit	
				-		EUTRON,GR.	CALIP	PER, CMT BO	DND		as DST irection	`run? al Survey			Yes (Submit Yes (Submit	
23. Casing	1			T		1	. s	tage Cementer	No. o	f Sks	&	Slurry	Vol.			
Hole Size	Size/Gra		. (#/ft.)	1 -	p (MD)	Bottom (MI	" "	Depth	Type of Cement (BBL)			Ceme	ent Top*	Amount Pulled		
12-1/4" 7-7/8"	8-5/8" J- 5-1/2" J-			0		324' 6555'				CLASS "G" PRIMLITE			332'			
							j			/50 POZ						
							-									
24. Tubing				<u> </u>			l									1 2 3 3 3
Size 2-7/8"	EOT@	Set (MD) 2 6207'	Pack TA @	er Depth 6109'	(MD)	Size	D	epth Set (MD)	Packer D	epth (MD)	Siz	e	Depti	h Set (MD)	Packer Depth (MD)
25. Produci	ng Intervals Formation					Bottom	26.	Perforation Perforated l		- 1		Size	No 1	Jolos		Dorf Status
A) Green I		1	5	To 027'	<u> </u>	6112'	50	27-6122'	IIICI VAI		.34"	oize	No. Holes Perf. Status			
B)																
C) D)			_				+-									
27. Acid, Fi	racture, Trea	atment, Ce	ment So	queeze,	etc.		l									
5027-6112	Depth Inter	val	- E	rac w/	378301#	20/40 white	eand a	nd 2061 hbls	Amount a							
3027-0112	-			iac w	3700017	20/40 Wille	sanu a	III ZOOT DDIE	- Ligitum	9 17 1	naia, n	i o stag				
				•												
28. Product	ion - Interva	al A														
	Test Date	Hours Tested	Test Produ		Oil BBL	Gas MCF	Water BBL	Oil Gr Corr. 2		Gas	s avity		luction N		20' RHAC I	Pumn
8/23/12	9/2/12	24			59	65	56	Con. 2	ш.		avity		12 X I-	J/4 X 2	.0 1011/01	штр
Choke	Tbg. Press.	Csg.	24 Hr		Oil	Gas	Water	Gas/O	il		ell Statu					
Size	Flwg. SI	Press.	Rate	•	BBL	MCF	BBL	Ratio		PF	RODU	CING				
28a. Produc						<u> </u>										
Date First Produced	Test Date	Hours Tested	Test Produ		Oil BBL	Gas MCF	Water BBL	Oil Gr Согт		Ga Gra	s avity	Proc	luction N	Method		
Choke Size	Tbg. Press. Flwg. SI	Csg. Press.	24 Hr Rate		Oil BBL	Gas MCF	Water BBL	Gas/O Ratio	il	We	ell Stati	ıs				·

^{*(}See instructions and spaces for additional data on page 2)

001 = -											
28b. Produ Date First	uction - Inte	rval C Hours	Test	Oil	Gas	Water	Oil Gr	avity.	Gas	Production Method	
Produced		Tested	Production	BBL	MCF	BBL	Corr. A		Gravity	Production Method	
Choke Size	Tbg. Press. Flwg. SI	Csg. Press.	24 Hr. Rate	Oil BBL	Gas MCF	Water BBL	Gas/O Ratio	il	Well Status		
	uction - Inte			·							
Date First Produced	Test Date	Hours Tested	Test Production	Oil BBL	Gas MCF	Water BBL	Oil Gr Corr. A		Gas Gravity	Production Method	
Choke Size	Tbg. Press. Flwg. SI	Csg. Press.	24 Hr. Rate	Oil BBL	Gas MCF	Water BBL	Gas/O Ratio	il	Well Status		
29. Dispos	sition of Gas	(Solid, us	ed for fuel, ve	nted, etc.)							
SOLD AND	USED FOR F	UEL									
30. Sumn	nary of Poro	us Zones	(Include Aqui	ifers):					31. Formati	on (Log) Markers	
	ng depth int				ereof: Cored in ol open, flowing				GEOLOG	ICAL MARKERS	
											Top
Form	nation	Top	Bottom		Descr	iptions, Conte	nts, etc.			Name	Meas, Depth
GREEN RIV	VER	5027'	6122'		<u>-</u>				GARDEN GU GARDEN GU	LCH MARKER LCH 1	4064' 4237'
									GARDEN GU POINT 3 MAI		4357' 4633'
									X MRKR Y MRKR		4849' 4886'
									DOUGLAS C BI-CARBONA	REEK MRKR NTE	5020' 5272'
									B LIMESTON CASTLE PEA		5415' 5856'
									BASAL CARE WASATCH	SONATE	6278' 6398'
											·
32. Addit	ional remark	cs (include	l plugging pro	cedure):					l		
33. Indica	ate which ite	ms have b	een attached l	y placing	a check in the	appropriate bo	oxes:				
		_	(1 full set requant ve	•		Geologic Repor		☐ DST Repo	ort	☑ Directional Survey	
34. I here	by certify th	at the fore	going and atta	ached info	rmation is comp	plete and corre	ect as dete	rmined from	all available r	ecords (see attached instructions)*	
N	lame (please	print)	nnifer Peat	ross			Title	Production	Technician		***************************************
S	ignature	X	MV	bo			Date _1	10/20/2012			
Title 18 U false, ficti	Fitle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any also, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.										

NEWFIELD EXPLORATION

USGS Myton SW (UT) SECTION 32 T8, R18 M-32-8-18

Wellbore #1

Design: Actual

Standard Survey Report

10 September, 2012

Survey Report

NEWFIELD EXPLORATION Company: Project: USGS Myton SW (UT)

SECTION 32 T8, R18 Site: Well: M-32-8-18

Wellbore: Wellbore #1 Design: Actual

Local Co-ordinate Reference: Well M-32-8-18

TVD Reference: M-32-8-18 @ 5021.0ft (NDSI SS #2) MD Reference: M-32-8-18 @ 5021.0ft (NDSI SS #2)

North Reference:

Survey Calculation Method: Minimum Curvature Database:

EDM 2003.21 Single User Db

Project USGS Myton SW (UT), DUCHESNE COUNTY, UT, USA

Map System: Geo Datum:

US State Plane 1983

North American Datum 1983

Map Zone: Utah Central Zone

Mean Sea Level System Datum:

Site **SECTION 32 T8, R18**

Site Position: From:

Lat/Long

Northing:

7,200,263.45 ft

Latitude:

40° 4' 35.740 N

Position Uncertainty:

0.0 ft

Easting: Slot Radius: 2,067,256.45ft

Longitude: **Grid Convergence:** 109° 58' 28.340 W 0.98°

IGRF2010

Well Position

Well

+N/-S +E/-W 0.0 ft 0.0 ft

M-32-8-18, SHL LAT: 40 04 34.78 LONG: -109 54 52.00

0.0

Northing: Easting:

7,200,458.75 ft 2,084,071.49 ft

11.25

0.0

Latitude: Longitude:

40° 4' 34.780 N 109° 54' 52.000 W

Position Uncertainty

0.0 ft

Wellhead Elevation:

7/21/2011

5,021.0 ft

Ground Level:

65.85

220.77

5,009.0 ft

52,303

Wellbore Wellbore #1 Field Strength Sample Date Declination Dip Angle Magnetics **Model Name** (°) (nT) (°)

Design Actual Audit Notes: ACTUAL 0.0 Version: Tie On Depth: 1.0 Phase: +E/-W +N/-S Direction Vertical Section: Depth From (TVD) (ft) (ft) (°) (ft)

Survey Program 9/10/2012 From To (ft) (ft) **Tool Name** Description Survey (Wellbore) 347.0 6,572.0 Survey #1 (Wellbore #1) MWD MWD - Standard

0.0

Survey		randa eran elvedes 1975 a certiva della					e a artia de muele. Per a trabajo de 1978 de 1		and the second s
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Råte (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
0.0	0.00	0,00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
347.0	0.88	105.70	347.0	-0.7	2.6	-1.1	0.25	0.25	0.00
377.0	0.88	104.40	377.0	-0.8	3.0	-1.3	0.07	0.00	-4.33
408.0	1.00	148.70	408.0	-1.1	3.4	-1.4	2.31	0.39	142.90
438.0	1.10	150.00	438.0	-1.6	3.7	-1.2	0.34	0.33	4.33
469.0	1.30	167.10	469.0	-2.2	3.9	-0.9	1.32	0.65	55.16
499.0	1.67	179.00	499.0	-3.0	4.0	-0.3	1.60	1.23	39.67
530.0	1.60	190.90	529.9	-3.9	3.9	0.4	1.12	-0.23	38.39
560.0	1.90	206.70	559.9	-4.7	3.6	1.2	1.88	1.00	52.67
590.0	2.00	208.30	589.9	-5.6	3.1	2.2	0.38	0.33	5.33
621.0	2.24	211.90	620.9	-6.6	2.5	3.3	0.89	0.77	11.61
651.0	2.30	216.00	650.9	-7.6	1.9	4.5	0.58	0.20	13.67
681.0	2.70	221.00	680.8	-8.6	1.1	5.8	1.52	1.33	16.67

Survey Report

Company:

NEWFIELD EXPLORATION

Project:

USGS Myton SW (UT)

Site: Well: **SECTION 32 T8, R18**

M-32-8-18

Wellbore: Design:

Wellbore #1 Actual

Local Co-ordinate Reference:

TVD Reference:

MD Reference: North Reference: Well M-32-8-18

M-32-8-18 @ 5021.0ft (NDSI SS #2)

M-32-8-18 @ 5021.0ft (NDSI SS #2)

Survey Calculation Method:

Minimum Curvature

Database:

EDM 2003.21 Single User Db

712.0 742.0 773.0 803.0 834.0 864.0 895.0 925.0 956.0 987.0 1,017.0 1,061.0 1,105.0 1,148.0 1,192.0 1,236.0 1,280.0 1,324.0 1,367.0 1,411.0 1,455.0 1,499.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,893.0 1,937.0 1,980.0	2.60 2.50 2.50 2.90 3.00 3.60 4.20 4.90 5.50 5.90 6.40 6.90 7.80 8.40 8.80 9.40 10.10 11.10 11.60 12.30 13.30 14.00 14.50 14.50 14.60	Azimuth (1) 222.90 223.40 222.50 223.10 222.90 220.20 219.20 217.90 217.90 228.60 228.60 228.60 225.00 226.40 225.20 223.20 224.30 223.10 220.30 219.30 219.20 220.00 220.50 220.70	Vertical Depth (ft) 711.8 741.8 772.7 802.7 833.7 863.6 894.5 924.4 955.2 986.0 1,015.8 1,059.5 1,103.0 1,145.5 1,189.0 1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	+N/-S (ft) -9.7 -10.6 -11.7 -12.8 -14.2 -15.7 -17.6 -19.7 -22.1 -24.7 -27.1 -30.8 -35.0 -39.5 -44.4 -49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	+EI-W (ft) 0.1 -0.8 -1.8 -2.8 -4.1 -5.4 -7.0 -8.7 -10.6 -12.7 -15.2 -19.4 -23.9 -28.5 -33.5 -38.7 -44.3 -50.3 -50.2 -62.5 -69.0 -75.9	Vertical Section (ft) 7.3 8.6 10.0 11.6 13.4 15.4 17.9 20.6 23.7 27.0 30.4 36.0 42.2 48.6 55.5 63.0 71.0 79.7 88.6 98.3 108.7 119.5	Dogleg Rate (7/100ft) 0.43 0.34 1.30 0.35 1.94 2.09 2.27 2.04 1.29 2.34 2.79 2.05 1.79 1.05 1.43 1.77 2.32 1.26 2.11 2.33 1.59	Build Rate (*/100ft) -0.32 -0.33 1.29 0.33 1.94 2.00 2.26 2.00 1.29 1.61 1.67 2.05 1.36 0.93 1.36 1.59 2.27 1.14 1.63 2.27 1.59	Turn Rate (7/100ft) 6.13 1.67 -2.90 2.00 -0.65 -9.00 -3.23 -4.33 0.00 15.81 19.33 0.00 -8.18 3.26 -2.73 -4.55 2.50 -2.73 -6.51 -2.27 -0.23
712.0 742.0 773.0 803.0 834.0 864.0 895.0 925.0 956.0 987.0 1,017.0 1,061.0 1,148.0 1,192.0 1,236.0 1,280.0 1,324.0 1,367.0 1,411.0 1,455.0 1,499.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,805.0 1,893.0 1,937.0	2.60 2.50 2.90 3.00 3.60 4.20 4.90 5.50 5.90 6.40 6.90 7.80 8.40 8.80 9.40 10.10 11.10 11.60 12.30 13.30 14.00 14.30 14.50	222.90 223.40 222.50 223.10 222.90 229.20 219.20 217.90 227.90 228.60 228.60 228.60 225.00 226.40 225.20 223.20 224.30 229.30 219.30 219.20 220.00 220.50	711.8 741.8 772.7 802.7 833.7 863.6 894.5 924.4 955.2 986.0 1,015.8 1,059.5 1,103.0 1,145.5 1,189.0 1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-9.7 -10.6 -11.7 -12.8 -14.2 -15.7 -17.6 -19.7 -22.1 -24.7 -27.1 -30.8 -35.0 -39.5 -44.4 -49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	0.1 -0.8 -1.8 -2.8 -4.1 -5.4 -7.0 -8.7 -10.6 -12.7 -15.2 -19.4 -23.9 -28.5 -33.5 -38.7 -44.3 -50.3 -56.2 -62.5 -69.0	7.3 8.6 10.0 11.6 13.4 15.4 17.9 20.6 23.7 27.0 30.4 36.0 42.2 48.6 55.5 63.0 71.0 79.7 88.6 98.3 108.7	0.43 0.34 1.30 0.35 1.94 2.09 2.27 2.04 1.29 2.34 2.79 2.05 1.79 1.05 1.43 1.77 2.32 1.26 2.11 2.33 1.59	-0.32 -0.33 1.29 0.33 1.94 2.00 2.26 2.00 1.29 1.61 1.67 2.05 1.36 0.93 1.36 1.59 2.27 1.14 1.63 2.27	6.13 1.67 -2.90 2.00 -0.65 -9.00 -3.23 -4.33 0.00 15.81 19.33 0.00 -8.18 3.26 -2.73 -4.55 2.50 -2.73 -6.51 -2.27
742.0 773.0 803.0 834.0 864.0 895.0 925.0 956.0 987.0 1,017.0 1,061.0 1,105.0 1,148.0 1,192.0 1,236.0 1,280.0 1,324.0 1,367.0 1,411.0 1,455.0 1,499.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,849.0 1,893.0 1,937.0	2.50 2.90 3.00 3.60 4.20 4.90 5.50 5.90 6.40 6.90 7.80 8.40 10.10 11.10 11.60 12.30 13.30 14.00 14.30 14.50	223.40 222.50 223.10 222.90 220.20 219.20 217.90 227.90 228.60 228.60 225.00 226.40 225.20 224.30 224.30 229.30 229.30 219.30 219.30 219.20 220.00	741.8 772.7 802.7 833.7 863.6 894.5 924.4 955.2 986.0 1,015.8 1,059.5 1,103.0 1,145.5 1,189.0 1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-10.6 -11.7 -12.8 -14.2 -15.7 -17.6 -19.7 -22.1 -24.7 -27.1 -30.8 -35.0 -39.5 -44.4 -49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	-0.8 -1.8 -2.8 -4.1 -5.4 -7.0 -8.7 -10.6 -12.7 -15.2 -19.4 -23.9 -28.5 -33.5 -38.7 -44.3 -50.3 -56.2 -62.5 -69.0	8.6 10.0 11.6 13.4 15.4 17.9 20.6 23.7 27.0 30.4 36.0 42.2 48.6 55.5 63.0 71.0 79.7 88.6 98.3 108.7	0.34 1.30 0.35 1.94 2.09 2.27 2.04 1.29 2.34 2.79 2.05 1.79 1.05 1.43 1.77 2.32 1.26 2.11 2.33 1.59	-0.33 1.29 0.33 1.94 2.00 2.26 2.00 1.29 1.61 1.67 2.05 1.36 0.93 1.36 1.59 2.27 1.14 1.63 2.27 1.59	1.67 -2.90 2.00 -0.65 -9.00 -3.23 -4.33 0.00 15.81 19.33 0.00 -8.18 3.26 -2.73 -4.55 2.50 -2.73 -6.51 -2.27
773.0 803.0 834.0 864.0 895.0 925.0 956.0 987.0 1,017.0 1,061.0 1,105.0 1,148.0 1,192.0 1,236.0 1,280.0 1,324.0 1,367.0 1,411.0 1,455.0 1,499.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,849.0 1,893.0 1,937.0	2.90 3.00 3.60 4.20 4.90 5.50 5.90 6.40 6.90 7.80 8.40 8.80 9.40 10.10 11.10 11.60 12.30 13.30 14.00 14.30 14.50	222.50 223.10 222.90 220.20 219.20 217.90 227.90 228.60 228.60 225.00 226.40 225.20 223.20 224.30 223.10 220.30 219.30 219.20 220.00	772.7 802.7 833.7 863.6 894.5 924.4 955.2 986.0 1,015.8 1,059.5 1,103.0 1,145.5 1,189.0 1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-11.7 -12.8 -14.2 -15.7 -17.6 -19.7 -22.1 -24.7 -27.1 -30.8 -35.0 -39.5 -44.4 -49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	-1.8 -2.8 -4.1 -5.4 -7.0 -8.7 -10.6 -12.7 -15.2 -19.4 -23.9 -28.5 -38.7 -44.3 -50.3 -56.2 -62.5 -69.0	10.0 11.6 13.4 15.4 17.9 20.6 23.7 27.0 30.4 36.0 42.2 48.6 55.5 63.0 71.0 79.7 88.6 98.3 108.7	1.30 0.35 1.94 2.09 2.27 2.04 1.29 2.34 2.79 2.05 1.79 1.05 1.43 1.77 2.32 1.26 2.11 2.33 1.59	1.29 0.33 1.94 2.00 2.26 2.00 1.29 1.61 1.67 2.05 1.36 0.93 1.36 1.59 2.27 1.14 1.63 2.27 1.59	-2.90 2.00 -0.65 -9.00 -3.23 -4.33 0.00 15.81 19.33 0.00 -8.18 3.26 -2.73 -4.55 2.50 -2.73 -6.51 -2.27
803.0 834.0 864.0 895.0 925.0 987.0 1,017.0 1,061.0 1,105.0 1,148.0 1,192.0 1,236.0 1,280.0 1,324.0 1,367.0 1,411.0 1,455.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,893.0 1,937.0	3.00 3.60 4.20 4.90 5.50 5.90 6.40 6.90 7.80 8.40 8.80 9.40 10.10 11.10 11.60 12.30 13.30 14.00 14.30 14.50	223.10 222.90 220.20 219.20 217.90 217.90 222.80 228.60 225.00 226.40 225.20 224.30 223.10 220.30 219.30 219.20 220.00	802.7 833.7 863.6 894.5 924.4 955.2 986.0 1,015.8 1,059.5 1,103.0 1,145.5 1,189.0 1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-12.8 -14.2 -15.7 -17.6 -19.7 -22.1 -24.7 -27.1 -30.8 -35.0 -39.5 -44.4 -49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	-2.8 -4.1 -5.4 -7.0 -8.7 -10.6 -12.7 -15.2 -19.4 -23.9 -28.5 -33.5 -38.7 -44.3 -50.3 -50.2 -62.5 -69.0	11.6 13.4 15.4 17.9 20.6 23.7 27.0 30.4 36.0 42.2 48.6 55.5 63.0 71.0 79.7 88.6 98.3 108.7	0.35 1.94 2.09 2.27 2.04 1.29 2.34 2.79 2.05 1.79 1.05 1.43 1.77 2.32 1.26 2.11 2.33 1.59	0.33 1.94 2.00 2.26 2.00 1.29 1.61 1.67 2.05 1.36 0.93 1.36 1.59 2.27 1.14 1.63 2.27 1.59	2.00 -0.65 -9.00 -3.23 -4.33 0.00 15.81 19.33 0.00 -8.18 3.26 -2.73 -4.55 2.50 -2.73 -6.51 -2.27
803.0 834.0 864.0 895.0 925.0 987.0 1,017.0 1,061.0 1,105.0 1,148.0 1,192.0 1,236.0 1,280.0 1,367.0 1,411.0 1,455.0 1,499.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,893.0 1,893.0 1,937.0	3.00 3.60 4.20 4.90 5.50 5.90 6.40 6.90 7.80 8.40 8.80 9.40 10.10 11.10 11.60 12.30 13.30 14.00 14.30 14.50	223.10 222.90 220.20 219.20 217.90 217.90 222.80 228.60 225.00 226.40 225.20 224.30 223.10 220.30 219.30 219.20 220.00	802.7 833.7 863.6 894.5 924.4 955.2 986.0 1,015.8 1,059.5 1,103.0 1,145.5 1,189.0 1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-12.8 -14.2 -15.7 -17.6 -19.7 -22.1 -24.7 -27.1 -30.8 -35.0 -39.5 -44.4 -49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	-2.8 -4.1 -5.4 -7.0 -8.7 -10.6 -12.7 -15.2 -19.4 -23.9 -28.5 -33.5 -38.7 -44.3 -50.3 -50.2 -62.5 -69.0	11.6 13.4 15.4 17.9 20.6 23.7 27.0 30.4 36.0 42.2 48.6 55.5 63.0 71.0 79.7 88.6 98.3 108.7	0.35 1.94 2.09 2.27 2.04 1.29 2.34 2.79 2.05 1.79 1.05 1.43 1.77 2.32 1.26 2.11 2.33 1.59	0.33 1.94 2.00 2.26 2.00 1.29 1.61 1.67 2.05 1.36 0.93 1.36 1.59 2.27 1.14 1.63 2.27 1.59	2.00 -0.65 -9.00 -3.23 -4.33 0.00 15.81 19.33 0.00 -8.18 3.26 -2.73 -4.55 2.50 -2.73 -6.51 -2.27
834.0 864.0 895.0 925.0 956.0 987.0 1,017.0 1,061.0 1,105.0 1,148.0 1,192.0 1,236.0 1,280.0 1,367.0 1,411.0 1,455.0 1,499.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,893.0 1,937.0	3.60 4.20 4.90 5.50 5.90 6.40 6.90 7.80 8.40 9.40 10.10 11.10 11.60 12.30 13.30 14.00 14.30 14.50	222.90 220.20 219.20 217.90 227.90 222.80 228.60 225.00 226.40 225.20 223.20 224.30 223.10 220.30 219.30 219.20 220.00	833.7 863.6 894.5 924.4 955.2 986.0 1,015.8 1,059.5 1,103.0 1,145.5 1,189.0 1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-14.2 -15.7 -17.6 -19.7 -22.1 -24.7 -27.1 -30.8 -35.0 -39.5 -44.4 -49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	-4.1 -5.4 -7.0 -8.7 -10.6 -12.7 -15.2 -19.4 -23.9 -28.5 -33.5 -38.7 -44.3 -50.3 -56.2 -62.5 -69.0	13.4 15.4 17.9 20.6 23.7 27.0 30.4 36.0 42.2 48.6 55.5 63.0 71.0 79.7 88.6 98.3 108.7	1.94 2.09 2.27 2.04 1.29 2.34 2.79 2.05 1.79 1.05 1.43 1.77 2.32 1.26 2.11 2.33 1.59	1.94 2.00 2.26 2.00 1.29 1.61 1.67 2.05 1.36 0.93 1.36 1.59 2.27 1.14 1.63 2.27 1.59	-0.65 -9.00 -3.23 -4.33 0.00 15.81 19.33 0.00 -8.18 3.26 -2.73 -4.55 2.50 -2.73 -6.51 -2.27
895.0 925.0 956.0 987.0 1,017.0 1,061.0 1,105.0 1,148.0 1,192.0 1,236.0 1,280.0 1,367.0 1,411.0 1,455.0 1,499.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,805.0 1,893.0 1,937.0	4.90 5.50 5.90 6.40 6.90 7.80 8.40 8.80 9.40 10.10 11.10 11.60 12.30 13.30 14.00 14.30 14.50 14.50	220.20 219.20 217.90 227.90 222.80 228.60 225.00 226.40 225.20 223.20 224.30 229.30 219.30 219.20 220.00	894.5 924.4 955.2 986.0 1,015.8 1,059.5 1,103.0 1,145.5 1,189.0 1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-15.7 -17.6 -19.7 -22.1 -24.7 -27.1 -30.8 -35.0 -39.5 -44.4 -49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	-5.4 -7.0 -8.7 -10.6 -12.7 -15.2 -19.4 -23.9 -28.5 -33.5 -38.7 -44.3 -50.3 -56.2 -62.5 -69.0	15.4 17.9 20.6 23.7 27.0 30.4 36.0 42.2 48.6 55.5 63.0 71.0 79.7 88.6 98.3 108.7	2.09 2.27 2.04 1.29 2.34 2.79 2.05 1.79 1.05 1.43 1.77 2.32 1.26 2.11 2.33 1.59	2.00 2.26 2.00 1.29 1.61 1.67 2.05 1.36 0.93 1.36 1.59 2.27 1.14 1.63 2.27 1.59	-3.23 -4.33 0.00 15.81 19.33 0.00 -8.18 3.26 -2.73 -4.55 2.50 -2.73 -6.51 -2.27
925.0 956.0 987.0 1,017.0 1,061.0 1,105.0 1,148.0 1,192.0 1,236.0 1,280.0 1,324.0 1,367.0 1,411.0 1,455.0 1,499.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,805.0 1,893.0 1,937.0	5.50 5.90 6.40 6.90 7.80 8.40 8.80 9.40 10.10 11.10 11.60 12.30 13.30 14.00 14.30 14.50	217.90 217.90 222.80 228.60 228.60 225.00 226.40 225.20 224.30 223.10 220.30 219.30 219.20 220.00	924.4 955.2 986.0 1,015.8 1,059.5 1,103.0 1,145.5 1,189.0 1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-19.7 -22.1 -24.7 -27.1 -30.8 -35.0 -39.5 -44.4 -49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	-8.7 -10.6 -12.7 -15.2 -19.4 -23.9 -28.5 -33.5 -38.7 -44.3 -50.3 -56.2 -62.5 -69.0	20.6 23.7 27.0 30.4 36.0 42.2 48.6 55.5 63.0 71.0 79.7 88.6 98.3 108.7	2.04 1.29 2.34 2.79 2.05 1.79 1.05 1.43 1.77 2.32 1.26 2.11 2.33 1.59	2.00 1.29 1.61 1.67 2.05 1.36 0.93 1.36 1.59 2.27 1.14 1.63 2.27 1.59	-4.33 0.00 15.81 19.33 0.00 -8.18 3.26 -2.73 -4.55 2.50 -2.73 -6.51 -2.27
956.0 987.0 1,017.0 1,061.0 1,105.0 1,148.0 1,192.0 1,236.0 1,280.0 1,324.0 1,367.0 1,411.0 1,455.0 1,499.0 1,543.0 1,580.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,895.0 1,893.0 1,937.0	5.90 6.40 6.90 7.80 8.40 8.80 9.40 10.10 11.10 11.60 12.30 13.30 14.00 14.30 14.50	217.90 222.80 228.60 228.60 225.00 226.40 225.20 223.20 224.30 229.30 219.30 219.20 220.00	955.2 986.0 1,015.8 1,059.5 1,103.0 1,145.5 1,189.0 1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-22.1 -24.7 -27.1 -30.8 -35.0 -39.5 -44.4 -49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	-10.6 -12.7 -15.2 -19.4 -23.9 -28.5 -38.7 -44.3 -50.3 -56.2 -62.5 -69.0	23.7 27.0 30.4 36.0 42.2 48.6 55.5 63.0 71.0 79.7 88.6 98.3 108.7	1.29 2.34 2.79 2.05 1.79 1.05 1.43 1.77 2.32 1.26 2.11 2.33 1.59	1.29 1.61 1.67 2.05 1.36 0.93 1.36 1.59 2.27 1.14 1.63 2.27 1.59	0.00 15.81 19.33 0.00 -8.18 3.26 -2.73 -4.55 2.50 -2.73 -6.51 -2.27
956.0 987.0 1,017.0 1,061.0 1,105.0 1,148.0 1,192.0 1,236.0 1,280.0 1,324.0 1,367.0 1,411.0 1,455.0 1,499.0 1,543.0 1,580.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,895.0 1,893.0 1,937.0	5.90 6.40 6.90 7.80 8.40 8.80 9.40 10.10 11.10 11.60 12.30 13.30 14.00 14.30 14.50	217.90 222.80 228.60 228.60 225.00 226.40 225.20 223.20 224.30 229.30 219.30 219.20 220.00	955.2 986.0 1,015.8 1,059.5 1,103.0 1,145.5 1,189.0 1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-22.1 -24.7 -27.1 -30.8 -35.0 -39.5 -44.4 -49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	-10.6 -12.7 -15.2 -19.4 -23.9 -28.5 -38.7 -44.3 -50.3 -56.2 -62.5 -69.0	23.7 27.0 30.4 36.0 42.2 48.6 55.5 63.0 71.0 79.7 88.6 98.3 108.7	1.29 2.34 2.79 2.05 1.79 1.05 1.43 1.77 2.32 1.26 2.11 2.33 1.59	1.29 1.61 1.67 2.05 1.36 0.93 1.36 1.59 2.27 1.14 1.63 2.27 1.59	0.00 15.81 19.33 0.00 -8.18 3.26 -2.73 -4.55 2.50 -2.73 -6.51 -2.27
987.0 1,017.0 1,061.0 1,105.0 1,148.0 1,192.0 1,236.0 1,280.0 1,367.0 1,411.0 1,455.0 1,499.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,718.0 1,762.0 1,805.0 1,893.0 1,937.0	6.40 6.90 7.80 8.40 8.80 9.40 10.10 11.10 11.60 12.30 13.30 14.00 14.30 14.50	222.80 228.60 228.60 225.00 226.40 225.20 224.30 223.10 220.30 219.30 219.20 220.00	986.0 1,015.8 1,059.5 1,103.0 1,145.5 1,189.0 1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-24.7 -27.1 -30.8 -35.0 -39.5 -44.4 -49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	-12.7 -15.2 -19.4 -23.9 -28.5 -33.5 -38.7 -44.3 -50.3 -56.2 -62.5 -69.0	27.0 30.4 36.0 42.2 48.6 55.5 63.0 71.0 79.7 88.6 98.3 108.7	2.34 2.79 2.05 1.79 1.05 1.43 1.77 2.32 1.26 2.11 2.33 1.59	1.61 1.67 2.05 1.36 0.93 1.36 1.59 2.27 1.14 1.63 2.27 1.59	15.81 19.33 0.00 -8.18 3.26 -2.73 -4.55 2.50 -2.73 -6.51 -2.27
1,017.0 1,061.0 1,105.0 1,148.0 1,192.0 1,236.0 1,280.0 1,367.0 1,415.0 1,455.0 1,499.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,893.0 1,893.0 1,937.0	6.90 7.80 8.40 8.80 9.40 10.10 11.10 11.60 12.30 13.30 14.00 14.30 14.50	228.60 228.60 225.00 226.40 225.20 223.20 224.30 229.30 219.30 219.20 220.00	1,015.8 1,059.5 1,103.0 1,145.5 1,189.0 1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-27.1 -30.8 -35.0 -39.5 -44.4 -49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	-15.2 -19.4 -23.9 -28.5 -33.5 -38.7 -44.3 -50.3 -56.2 -62.5 -69.0	30.4 36.0 42.2 48.6 55.5 63.0 71.0 79.7 88.6 98.3 108.7	2.79 2.05 1.79 1.05 1.43 1.77 2.32 1.26 2.11 2.33 1.59	1.67 2.05 1.36 0.93 1.36 1.59 2.27 1.14 1.63 2.27 1.59	19.33 0.00 -8.18 3.26 -2.73 -4.55 2.50 -2.73 -6.51 -2.27
1,061.0 1,105.0 1,148.0 1,192.0 1,236.0 1,280.0 1,324.0 1,367.0 1,411.0 1,455.0 1,499.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,849.0 1,893.0 1,937.0	7.80 8.40 8.80 9.40 10.10 11.10 11.60 12.30 13.30 14.00 14.30 14.50	228.60 225.00 226.40 225.20 223.20 224.30 223.10 220.30 219.30 219.20 220.00 220.50	1,059.5 1,103.0 1,145.5 1,189.0 1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-30.8 -35.0 -39.5 -44.4 -49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	-19.4 -23.9 -28.5 -33.5 -38.7 -44.3 -50.3 -56.2 -62.5 -69.0	36.0 42.2 48.6 55.5 63.0 71.0 79.7 88.6 98.3 108.7	2.05 1.79 1.05 1.43 1.77 2.32 1.26 2.11 2.33 1.59	2.05 1.36 0.93 1.36 1.59 2.27 1.14 1.63 2.27 1.59	0.00 -8.18 3.26 -2.73 -4.55 2.50 -2.73 -6.51 -2.27
1,105.0 1,148.0 1,192.0 1,236.0 1,280.0 1,324.0 1,367.0 1,411.0 1,455.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,805.0 1,893.0 1,937.0	8.80 9.40 10.10 11.10 11.60 12.30 13.30 14.00 14.30 14.50	226.40 225.20 223.20 224.30 223.10 220.30 219.30 219.20 220.00 220.50	1,103.0 1,145.5 1,189.0 1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1	-35.0 -39.5 -44.4 -49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	-23.9 -28.5 -33.5 -38.7 -44.3 -50.3 -56.2 -62.5 -69.0	42.2 48.6 55.5 63.0 71.0 79.7 88.6 98.3 108.7	1.79 1.05 1.43 1.77 2.32 1.26 2.11 2.33 1.59	1.36 0.93 1.36 1.59 2.27 1.14 1.63 2.27 1.59	-8.18 3.26 -2.73 -4.55 2.50 -2.73 -6.51 -2.27
1,148.0 1,192.0 1,236.0 1,280.0 1,324.0 1,367.0 1,415.0 1,455.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,893.0 1,893.0	8.80 9.40 10.10 11.10 11.60 12.30 13.30 14.00 14.30 14.50	226.40 225.20 223.20 224.30 223.10 220.30 219.30 219.20 220.00 220.50	1,145.5 1,189.0 1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-39.5 -44.4 -49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	-28.5 -33.5 -38.7 -44.3 -50.3 -56.2 -62.5 -69.0	48.6 55.5 63.0 71.0 79.7 88.6 98.3 108.7	1.05 1.43 1.77 2.32 1.26 2.11 2.33 1.59	0.93 1.36 1.59 2.27 1.14 1.63 2.27 1.59	3.26 -2.73 -4.55 2.50 -2.73 -6.51 -2.27
1,192.0 1,236.0 1,280.0 1,324.0 1,367.0 1,411.0 1,455.0 1,499.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,849.0 1,893.0 1,937.0	9.40 10.10 11.10 11.60 12.30 13.30 14.00 14.30 14.50	225.20 223.20 224.30 223.10 220.30 219.30 219.20 220.00 220.50	1,189.0 1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-44.4 -49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	-33.5 -38.7 -44.3 -50.3 -56.2 -62.5 -69.0	55.5 63.0 71.0 79.7 88.6 98.3 108.7	1.43 1.77 2.32 1.26 2.11 2.33 1.59	1.36 1.59 2.27 1.14 1.63 2.27 1.59	-2.73 -4.55 2.50 -2.73 -6.51 -2.27
1,236.0 1,280.0 1,324.0 1,367.0 1,411.0 1,455.0 1,499.0 1,543.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,893.0 1,937.0	10.10 11.10 11.60 12.30 13.30 14.00 14.30 14.50	223.20 224.30 223.10 220.30 219.30 219.20 220.00 220.50	1,232.4 1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-49.7 -55.6 -61.8 -68.5 -76.0 -84.0 -92.3	-38.7 -44.3 -50.3 -56.2 -62.5 -69.0	63.0 71.0 79.7 88.6 98.3 108.7	1.77 2.32 1.26 2.11 2.33 1.59	1.59 2.27 1.14 1.63 2.27 1.59	-4.55 2.50 -2.73 -6.51 -2.27
1,280.0 1,324.0 1,367.0 1,411.0 1,455.0 1,499.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,805.0 1,893.0 1,937.0	11.10 11.60 12.30 13.30 14.00 14.30 14.50	224.30 223.10 220.30 219.30 219.20 220.00 220.50	1,275.6 1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-55.6 -61.8 -68.5 -76.0 -84.0 -92.3	-44.3 -50.3 -56.2 -62.5 -69.0	71.0 79.7 88.6 98.3 108.7	2.32 1.26 2.11 2.33 1.59	2.27 1.14 1.63 2.27 1.59	2.50 -2.73 -6.51 -2.27
1,324.0 1,367.0 1,411.0 1,455.0 1,499.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,849.0 1,893.0 1,937.0	11.60 12.30 13.30 14.00 14.30 14.50	223.10 220.30 219.30 219.20 220.00 220.50	1,318.7 1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-61.8 -68.5 -76.0 -84.0 -92.3	-50.3 -56.2 -62.5 -69.0	79.7 88.6 98.3 108.7	1.26 2.11 2.33 1.59	1.14 1.63 2.27 1.59	-2.73 -6.51 -2.27
1,367.0 1,411.0 1,455.0 1,499.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,849.0 1,893.0	12.30 13.30 14.00 14.30 14.50 14.50	220.30 219.30 219.20 220.00 220.50	1,360.8 1,403.7 1,446.5 1,489.1 1,531.8	-68.5 -76.0 -84.0 -92.3	-56.2 -62.5 -69.0	88.6 98.3 108.7	2.11 2.33 1.59	1.63 2.27 1.59	-6.51 -2.27
1,411.0 1,455.0 1,499.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,849.0 1,893.0 1,937.0	13.30 14.00 14.30 14.50 14.50	219.30 219.20 220.00 220.50	1,403.7 1,446.5 1,489.1 1,531.8	-76.0 -84.0 -92.3	-62.5 -69.0	98.3 108.7	2,33 1.59	2.27 1.59	-2.27
1,455.0 1,499.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,849.0 1,893.0 1,937.0	14.00 14.30 14.50 14.50	219.20 220.00 220.50	1,446.5 1,489.1 1,531.8	-84.0 -92.3	-69.0	108.7	1.59	1.59	
1,499.0 1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,849.0 1,893.0 1,937.0	14.30 14.50 14.50	220.00 220.50	1,489.1 1,531.8	-92.3					-0.23
1,543.0 1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,849.0 1,893.0 1,937.0	14.50 14.50	220.50	1,531.8		-/5.9	1195			4.00
1,586.0 1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,849.0 1,893.0 1,937.0	14.50			400 7		110.0	0.81	0.68	1.82
1,630.0 1,674.0 1,718.0 1,762.0 1,805.0 1,849.0 1,893.0 1,937.0		220.70		-100.7	-83.0	130.4	0.54	0.45	1.14
1,674.0 1,718.0 1,762.0 1,805.0 1,849.0 1,893.0 1,937.0	14 AD		1,573.4	-108.8	-90.0	141.2	0.12	0.00	0.47
1,718.0 1,762.0 1,805.0 1,849.0 1,893.0 1,937.0		222.10	1,616.0	-117.1	-97.3	152.2	0.83	0.23	3.18
1,762.0 1,805.0 1,849.0 1,893.0 1,937.0	14.90	222,30	1,658.5	-125.4	-104.8	163.4	0.69	0.68	0.45
1,805.0 1,849.0 1,893.0 1,937.0	15.00	222.70	1,701.0	-133.8	-112.5	174.8	0.33	0.23	0.91
1,805.0 1,849.0 1,893.0 1,937.0	14.90	222.70	1,743.5	-142.1	-120.2	186.1	0.23	-0.23	0.00
1,893.0 1,937.0	14.40	221.70	1,785.1	-150.2	-127.5	197.0	1.30	-1.16	-2.33
1,937.0	14.00	220.70	1,827.8	-158.3	-134.6	207.8	1.07	-0.91	-2.27
	13.90	221.20	1,870.5	-166.3	-141.5	218.4	0.36	-0.23	1.14
1 980 0	13.40	220.90	1,913.3	-174.1	-148.3	228.8	1.15	-1.14	-0.68
	12.80	220.20	1,955.1	-181.6	-154.7	238.5	1.44	-1.40	-1.63
2,024.0	12.70	218.70	1,998.1	-189.1	-160.9	248.2	0.79	-0.23	-3.41
2,068.0	13.20	219.30	2,040.9	-196.7	-167.1	258.1	1.18	1.14	1.36
2,112.0	13.05	220,25	2,083.8	-204.4	-173.5	268.1	0.60	-0.34	2.16
2,156.0	12.80	219.00	2,126.7	-212.0	-179.7	277.9	0.85	-0.57	-2.84
2,199.0	13.30	220,20	2,168,6	-219.5	-185.9	287.6	1.32	1.16	2.79
2,199.0	13.30	218.70	2,100.0	-219.5 -227.2	-192.3	297.7	0.90	-0.45	-3.41
2,287.0	12.90	218.50	2,254.3	-234.9	-192.5	307.5	0.47	-0.45	-0.45
2,331.0	13.30	218.60	2,297.1	-242.7	-204.7	317.5	0.91	0.91	0.23
2,375.0	13.40	218.60	2,339.9	-250.7	-211.0	327.7	0.23	0.23	00.0
2,418.0	13.70	221.00	2,381.7	-258.4	-217.5	337.7	1.48	0.70	5.58 0.00
2,462.0	13.75	221.00	2,424.5	-266.3	-224.3 -231.2	348.2 358.7	0.11 0.38	0.11 0.34	-0.68
2,506.0 2,550.0	13.90 13.80	220.70 222.45	2,467.2 2,509.9	-274.3 -282.1	-231.2 -238.2	369.2	0.36	-0.23	3.98
2,593.0 2,593.0	14.10	224.70	2,509.9	-289.6	-245.3	379.6	1.44	0.70	5.23
2,637.0	14.20	226.10	2,594.3	-297.2	-253.0	390.3	0.81	0.23	3.18
2,681.0	14.10	225.60	2,637.0	-304.7	-260.7	401.0	0.36	-0.23	-1.14
2,725.0	13.45	224.20	2,679.7	-312.1	-268.1	411.5	1.66	-1.48	-3.18
2,769.0	12.60 12.20	224.80	2,722.6	-319.2	-275.1	421.3	1.96	-1.93	1.36
2,812.0		224.45	2,764.6	-325.7	-281.6	430.6	0.95	-0.93	-0.81

Survey Report

Company:

NEWFIELD EXPLORATION

Project:

USGS Myton SW (UT)

Site:

SECTION 32 T8, R18

Well:

M-32-8-18

Wellbore: Design:

Wellbore #1 Actual

Local Co-ordinate Reference:

TVD Reference:

Well M-32-8-18

M-32-8-18 @ 5021.0ft (NDSI SS #2) M-32-8-18 @ 5021.0ft (NDSI SS #2)

MD Reference: North Reference:

Survey Calculation Method:

Minimum Curvature

Database:

EDM 2003.21 Single User Db

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Råte	Build Rate	Turn Rate
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	(°/100ft)	(°/100ft)
2,988.0	12.50	221.70	2,936.4	-353.9	-307.1	468.5	0.77	-0.68	-1.59
3,031.0	12.00	220.25	2,978.5	-360,8	-313.0	477.6	1.37	-1.16	-3.37
3,075.0	11.50	218.85	3,021.5	-367.7	-318.8	486.6	1.31	-1.14	-3.18
3,119.0	11.30	216.40	3,064.7	-374.6	-324.1	495.3	1.19	-0.45	-5.57
3,163.0	11.40	218.40	3,107.8	-381.4	-329.3	503.9	0.92	0.23	4.55
3,207.0	11.40	216.60	3,150.9	-388.3	-334.6	512.6	0.81	0.00	-4.09
3,250.0	11.40	214.90	3,193.1	-395.2	-339.6	521,1	0.78	0.00	-3.95
3,294.0	11.70	217.80	3,236.2	-402.3	-344.8	529.9	1.49	0.68	6,59
3,338.0	12.60	218.80	3,279.2	-409.6	-350.5	539.1	2.10	2.05	2.27
3,382.0	13.00	220.10	3,322.1	-417.1	-356.7	548.9	1.12	0.91	2.95
3,426.0	12.90	218.20	3,365.0	-424.8	-363.0	558.7	0.99	-0.23	-4.32
3,469.0	13.20	218.50	3,406.9	-432,4	-369.0	568.4	0.72	0.70	0.70
3,513.0	14.20	221.70	3,449.7	-440.3	-375.7	578.8	2.85	2.27	7.27
3,557.0	14.70	222.40	3,492.3	-448.5	-383.1	589.8	1.20	1.14	1.59
3,601.0	14.60	222.00	3,534.8	-456.7	-390,5	600.9	0.32	-0.23	-0.91
3,646.0	13.60	219.80	3,578.5	-465.0	-397.7	611.9	2.52	-2.22	-4.89
3,689.0	13.30	219.90	3,620.3	-472.7	-404.1	621.9	0.70	-0.70	0.23
3,732.0	13.50	220.90	3,662.1	-480.3	-410.6	631.9	0.71	0.47	2.33
3,776.0	13,40	222.00	3,704.9	-487.9	-417.4	642.1	0.62	-0.23	2.50
3,820.0	13.50	224.30	3,747.7	-495.4	-424.4	652.3	1.24	0.23	5.23
3,864.0	13.50	224.20	3,790.5	-502.8	-431.5	662.6	0.05	0.00	-0.23
3,908.0	13.10	224.30	3,833.3	-510.0	-4 38.6	672.7	0.91	-0.91	0.23
3,951.0	12.70	225.00	3,875.2	-516.9	-445.3	682.2	1.00	-0.93	1.63
3,995.0	12.00	222.90	3,918.2	-523.6	-451.9	691.6	1.89	-1.59	-4.77
4,039.0	12.00	221.30	3,961.2	-530.4	-458.0	700.8	0.76	0.00	-3.64
4,083.0	11.90	217.30	4,004.3	-537.5	-463.8	709.9	1.90	-0.23	-9.09
4,126.0	12.00	215.40	4,046.4	- 544.6	-469.0	718.8	0.94	0.23	-4.42
4,170.0	12.80	215.70	4,089.3	-552.3	-474.5	728.2	1.82	1.82	86.0
4,214.0	13.80	218.20	4,132.2	-560.4	-480.6	738.3	2.62	2.27	5.68
4,258.0	14.30	221.80	4,174.8	-568.6	-487.5	748.9	2.29	1.14	8.18
4,302.0	14.00	220.70	4,217.5	-576.7	-494.6	759.7	0.92	-0.68	-2.50
4,346.0	14.20	220.00	4,260.2	-584.8	-501.5	770.4	0.60	0.45	-1.59
4,389.0	13.80	219.80	4,301.9	-592.8	-508.2	780.8	0.94	-0.93	-0.47
4,433.0	13.20	220.10	4,344.7	-600.7	-514.8	791.1	1.37	-1.36	0.68
4,477.0	13.10	220.70	4,387.5	-608.3	~521.3	801.1	0.38	-0.23	1.36
4,521.0	12.50	218.50	4,430.4	-615.8	-527.5	810.8	1.76	-1.36	-5.00 3.40
4,564.0 4,608.0	12.70 12.90	220.00 219.80	4,472.4 4,515.3	-623.1 -630.6	-533.4 -539.7	820.2 830.0	0.89 0.47	0.47 0.45	3.49 -0.45
			4,558.2	-637.9	-545.9	839.6	1.14	-1.14	0.23
4,652.0 4,696.0	12.40 13.20	219.90 220.10	4,558.2 4,601.1	-637.9 -645.4	-545.9 -552.1	849.3	1.14	-1.14 1.82	0.45
4,696.0	13.70	220.10	4,643.0	-653.0	-552.1 -558.6	859.3	1.02	1.16	0.70
4,783.0	14.20	218.10	4,685.7	-661.3	-565.3	870.0	1.70	1.14	-5.23
4,827.0	13.60	220.60	4,728.4	-669.4	-572.0	880.5	1.93	-1.36	5.68
4,871.0	13.10	224.10	4,771.2	-676.9	-578.8	890.7	2.16	-1.14	7.95
4,915.0	12.70	222.60	4,814.1	-684.1	-585.6	900.5	1.19	-0.91	-3.41
4,958.0	13.30	223.40	4,856.0	-691.2	-592.2	910.1	1.46	1.40	1.86
5,002.0	13.50	223,95	4,898.8	-698.5	-599.2	920.3	0.54	0.45	1.25
5,046.0	13.10	223.20	4,941.6		-606.2	930.4	0.99	-0.91	-1.70
5,090.0	14.00	223.30	4,984.4	-713.4	-613.3	940.7	2.05	2.05	0.23
5,133.0	14.70	221.60	5,026.0	-721.2	-620.4	951.4	1.90	1.63	-3.95
5,177.0	14.00	221.00	5,068.7	-729.4	-627.6	962.3	1.63	-1.59	-1.36
5,221.0	14.20	220.60	5,111.3	-737.5	-634.6	973.0	0.51	0.45	-0.91
5,265.0	13.75	218.90	5,154.0	-745.7	-641.4	983.6	1.38	-1.02	-3.86
5,309.0	13.20	217.75	5,196.8	-753.8	-647.8	993.9	1.39	-1.25	-2.61

Survey Report

Company:

NEWFIELD EXPLORATION

Project:

USGS Myton SW (UT)

Site:

SECTION 32 T8, R18

Well:

M-32-8-18

Wellbore: Design:

Wellbore #1 Actual

Local Co-ordinate Reference:

Well M-32-8-18

TVD Reference:

M-32-8-18 @ 5021.0ft (NDSI SS #2)

MD Reference:

M-32-8-18 @ 5021.0ft (NDSI SS #2)

North Reference:

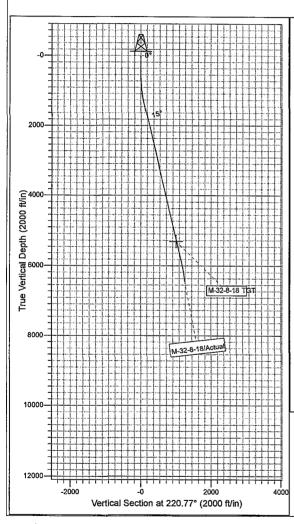
Survey Calculation Method: Database:

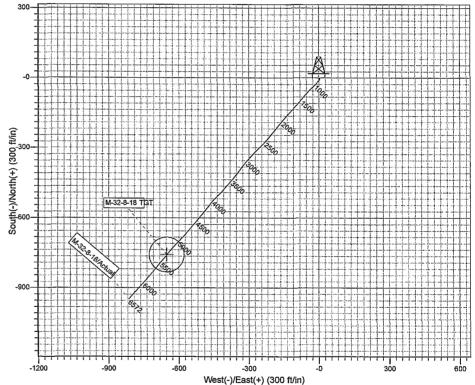
Minimum Curvature

EDM 2003.21 Single User Db

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth (ft)	Inclination	Azimuth	Depth (ft)	+N/-S	+E/-W	Section (ft)	Rate (°/100ft)	Rate (°/100ft)	Rate_ (°/100ft)
, ,,,	(*)	(°)	(it)	(ft)	(ft)	VV	(710010)	(/ lowly	(710011)
5,352.0	13.40	219.50	5,238.7	-761.5	-654.0	1,003.8	1.05	0.47	4.07
5,396.0	13.70	220.50	5,281.4	-769.4	-660,6	1,014.1	0.87	0.68	2.27
5,410.3	13.70	220.56	5,295.3	-771.9	-662.8	1,017.5	0.11	0.00	0.45
M-32-8-18 T	GT								
5,440.0	13.70	220.70	5,324.2	-777.3	-667.4	1,024.5	0.11	0.00	0.45
5,484.0	13.30	220.90	5,367.0	-785.1	-674.1	1,034.8	0.92	-0.91	0.45
5,527.0	13.20	220.15	5,408.8	<i>-</i> 792.6	-680.5	1,044.6	0.46	-0.23	-1.74
5,571.0	12.80	218.90	5,451.7	-800.2	-686.8	1,054.5	1.11	-0.91	-2.84
5,615.0	12.70	216.30	5,494.6	-807.9	-692.7	1,064.2	1.32	-0.23	-5.91
5,659.0	13.10	218.30	5,537.5	-815.7	-698.7	1,074.0	1.36	0.91	4.55
5,703.0	13.50	219.80	5,580.3	-823.6	-705.1	1,084.1	1.20	0.91	3,41
5,746.0	14.00	222.20	5,622.1	-831.3	-711.8	1,094.3	1.76	1.16	5.58
5,790.0	14.20	221.80	5,664.8	-839,2	-718.9	1,105.1	0.51	0.45	-0.91
5,834.0	13.40	219.90	5,707.5	-847.2	-725.8	1,115.6	2.09	-1.82	-4.32
5,878.0	12.80	220.60	5,750.4	-854.8	-732.2	1,125.5	1.41	-1.36	1.59
5,921.0	12.80	220,00	5,792.3	-862.0	-738.4	1,135.1	0.31	0.00	-1.40
5,965.0	12.60	220.70	5,835.2	-869.4	-744.7	1,144.7	0.57	-0.45	1.59
6,009.0	13.30	221.00	5,878.1	-876.9	-751.1	1,154.6	1.60	1.59	0.68
6,052.0	13.00	222.00	5,920.0	-884.2	-757.6	1,164.4	0.88	-0.70	2.33
6,096.0	12.80	221.70	5,962.9	-891.5	-764.2	1,174.2	0.48	-0.45	-0.68
6,140.0	12.40	222.40	6,005.8	-898.6	-770.6	1,183.8	0.97	-0.91	1.59
6,184.0	11.60	223.50	6,048.8	-905.3	-776.8	1,192.9	1.89	-1.82	2.50
6,228.0	10.60	222,90	6,092.0	-911.5	-782.6	1,201.4	2.29	-2.27	-1.36
6,271.0	9.60	221.20	6,134.3	-917.1	-787.7	1,208.9	2.43	-2.33	-3.95
6,315.0	8.80	220.20	6,177.8	-922.4	-792.3	1,216.0	1.85	-1.82	-2.27
6,403.0	7.70	220.50	6,264.9	-932.1	-800.4	1,228.6	1.25	-1.25	0.34
6,447.0	7.10	218.30	6,308.5	-936.4	-804.0	1,234.3	1.51	-1.36	-5.00
6,490.0	6.80	217.90	6,351.2	-940.5	-807.2	1,239.4	0.71	-0.70	-0.93
6,518.0	6.70 6.70	220,20 220,20	6,379.0 6,432.6	-943.1	-809.3 -813.4 	1,242.7 1,249.0	1.03 0.00	-0.36 0.00	8.21 0.00

Checked By:	Approved By:	Date:	


Project: USGS Myton SW (UT) Site: SECTION 32 T8, R18 Well: M-32-8-18 Wellbore: Wellbore #1


Design: Actual

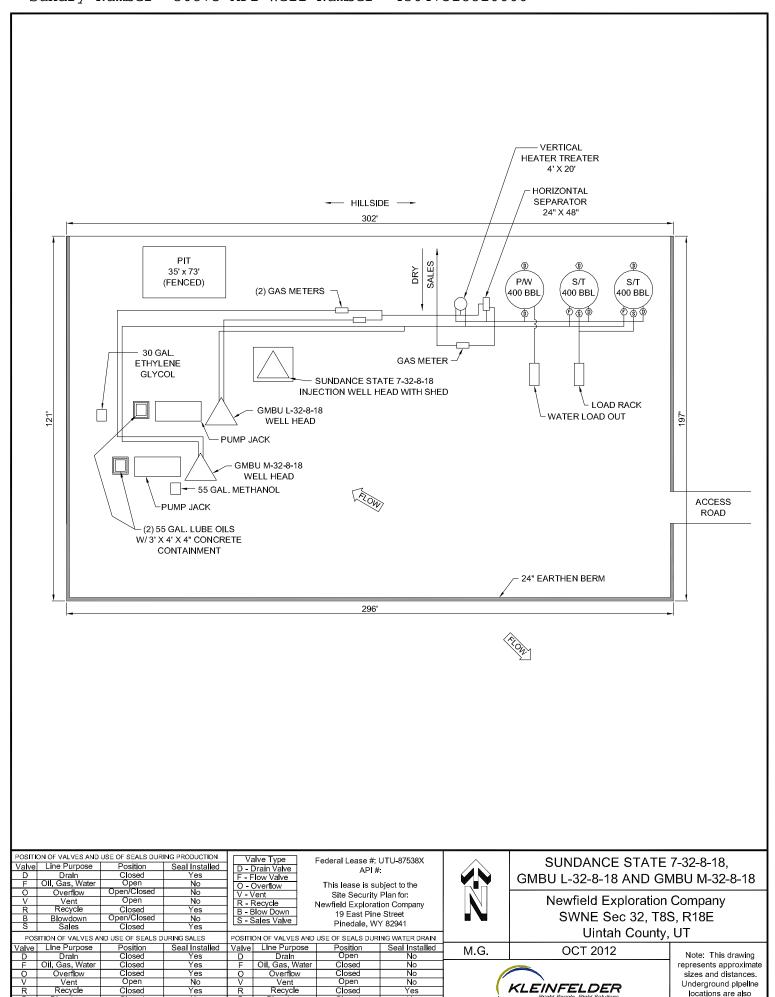
Azimuths to True North Magnetic North: 11.24°

Magnetic Field Strength: 52302,6snT Dip Angle: 65.85° Date: 7/21/2011 Model: IGRF2010

Design: Actual (M-32-8-18/Wellbore #1)

Created By: Sarah Well-

Date:


13:34, September 10 20

THIS SURVEY IS CORRECT TO THE BEST OF MY KNOWLEDGE AND IS SUPPORTED BY ACTUAL FIELD DATA

Sundry Number: 36875 API Well Number: 43047518810000

			FORM 9		
	STATE OF UTAH		I SKIII S		
	DEPARTMENT OF NATURAL RESOURC DIVISION OF OIL, GAS, AND MIN		5.LEASE DESIGNATION AND SERIAL NUMBER: ML-22058		
SUNDR	ON WELLS	6. IF INDIAN, ALLOTTEE OR TRIBE NAME:			
Do not use this form for procurrent bottom-hole depth, FOR PERMIT TO DRILL form	7.UNIT or CA AGREEMENT NAME: GMBU (GRRV)				
1. TYPE OF WELL Oil Well	8. WELL NAME and NUMBER: GMBU M-32-8-18				
2. NAME OF OPERATOR: NEWFIELD PRODUCTION CO	9. API NUMBER: 43047518810000				
3. ADDRESS OF OPERATOR: 1001 17th Street, Suite 200	9. FIELD and POOL or WILDCAT: EIGHT MILE FLAT				
4. LOCATION OF WELL FOOTAGES AT SURFACE: 1957 FNL 1823 FEL		COUNTY: UINTAH			
QTR/QTR, SECTION, TOWNSH	HIP, RANGE, MERIDIAN: 32 Township: 08.0S Range: 18.0E Merid	ian: S	STATE: UTAH		
11. CHEC	K APPROPRIATE BOXES TO INDICAT	E NATURE OF NOTICE, REPOR	RT, OR OTHER DATA		
TYPE OF SUBMISSION		TYPE OF ACTION			
	ACIDIZE	ALTER CASING	CASING REPAIR		
NOTICE OF INTENT	CHANGE TO PREVIOUS PLANS	CHANGE TUBING	CHANGE WELL NAME		
Approximate date work will start:	CHANGE WELL STATUS	COMMINGLE PRODUCING FORMATIONS	CONVERT WELL TYPE		
SUBSEQUENT REPORT Date of Work Completion:	DEEPEN	FRACTURE TREAT	New construction		
4/1/2013		PLUG AND ABANDON			
	OPERATOR CHANGE		☐ PLUG BACK		
SPUD REPORT Date of Spud:	PRODUCTION START OR RESUME	RECLAMATION OF WELL SITE	☐ RECOMPLETE DIFFERENT FORMATION		
	REPERFORATE CURRENT FORMATION	SIDETRACK TO REPAIR WELL	☐ TEMPORARY ABANDON		
DRILLING REPORT	TUBING REPAIR	VENT OR FLARE	WATER DISPOSAL		
Report Date:	WATER SHUTOFF	SI TA STATUS EXTENSION	APD EXTENSION		
	WILDCAT WELL DETERMINATION	✓ OTHER	OTHER: Site Facility/Site Security		
SEE ATT	COMPLETED OPERATIONS. Clearly show a	TÝ DIAGRAM	Accepted by the Utah Division of Oil, Gas and Mining FOR RECORD ONLY April 23, 2013		
NAME (PLEASE PRINT) Jill L Loyle	PHONE NUMB 303 383-4135	ER TITLE Regulatory Technician			
SIGNATURE N/A		DATE 4/22/2013			

Sundry Number: 36875 API Well Number: 43047518810000

Yes No

Closed Closed

Closed Open

locations are also

approximated.